首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The heavy metal inventory and the ecological risk of the estuarine sediments in Hailing Bay, an important maricultural zone along the southern coast of China, were investigated. Results show that the surface sediments were mainly polluted by As (2.17-20.34 mg/kg), Ni (1.37-42.50mg/kg), Cu (1.21-58.84 mg/kg) and Zn (11.69-219.22 mg/kg). Furthermore, the aquafarming zone was significantly more polluted than the non-aquafarming zone, and cluster analysis suggested additional sources of heavy metal input in the aquafarming zone. As, Cr, Cu, Ni, Pb and Zn were mainly present in the non-bioavailable residual form in the surface sediments, whereas Cd was predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd, and from As, Cu and Pb to less degrees. The highest potential risks occurred near the aquaculture base, indicating the need to control heavy metal inputs from aquafarming activities.  相似文献   

2.
典型小型水库表层沉积物重金属分布特征及生态风险   总被引:2,自引:1,他引:1  
以典型乡镇水库通济桥水库表层沉积物为研究对象,在分析其中As、Cd、Cr、Cu、Hg、Ni、Pb和Zn等有毒、有害重金属分布特征的基础上,分析重金属来源,评价重金属污染程度及其潜在生态危害.结果表明:通济桥水库表层沉积物中,上述8种重金属均存在一定程度的污染,坝前和入库区污染物蓄积更为明显.其中,Hg和Cd的污染范围较广、污染程度较严重.受重金属Hg和Cd的影响,水库表层沉积物存在中等程度的重金属生态危害风险,其中坝前区域已处于强风险等级.为保障水库水体水质安全,防范重金属污染应提到当前水库管理工作的重要位置.  相似文献   

3.
太湖流域滆湖底泥重金属赋存特征及其生物有效性   总被引:1,自引:0,他引:1  
包先明  晁建颖  尹洪斌 《湖泊科学》2016,28(5):1010-1017
为了探讨太湖流域滆湖底泥重金属(Cd、Cr、Cu、Zn、Ni和Pb)的赋存特征及其生物有效性,对底泥重金属总量、形态以及生物富集量进行了分析.结果表明,6种重金属含量的空间分布表现为北部湖区最高,其次为南部湖区,中部湖区最低,重金属Ni、Cu、Zn和Pb含量显著高于沉积物背景值,分别是背景值的4.77、3.89、2.96和2.76倍,重金属总量与沉积物中的黏土成分含量具有显著相关性.采用三级四部提取法对重金属形态进行分析表明,6种重金属的生物有效态(弱酸结合态、可还原态和可氧化态之和)含量顺序为CdCuZnPbNiCr,其中Cd、Cu、Zn和Pb的生物有效态含量分别占总量的84.15%、78.47%、76.50%和64.29%.Cu和Zn在铜锈环棱螺中富集含量要显著高于其他金属元素.相关性分析表明,6种重金属中仅Cr和Pb的生物富集量与有效态含量具有显著相关性,这表明,重金属在生物体内的富集不仅与有效态含量有关,还与底泥重金属总量有关.因此,评价滆湖重金属的生态风险时需要综合考虑重金属的总量及生物有效态含量.  相似文献   

4.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

5.
In this paper, the vertical variations of heavy metal elements (including Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the sediments of Songhua Lake are analyzed using sediment cores. A 70‐year evolutionary history of these heavy metal elements in Songhua Lake is described and the sources of the heavy metals in the sediments are investigated by evaluating the pollution characteristics of the metals in terms of their enrichment coefficients and geoaccumulation indexes. The results indicate that Cr, Cu, Mn, Ni, Pb, and Zn in the sediments originated mainly from basin erosion and were transported to the lake by rivers. Cd and Hg in the sediments also originated from basin erosion that occurred prior to the mid‐1990s, and these sediments have since been overlaid by artificial pollution. The distribution of heavy metals in the sediments of Songhua Lake is influenced by many factors, including sediment composition, the relative importance of fluvial input, and artificial pollution.  相似文献   

6.
分析了阳宗海柱状及表层沉积物中Al、Fe、Mn、Zn、Cr、Co、Ni、Cu、As、Cd、Pb等金属元素的含量,结合沉积年代学,研究了沉积物重金属污染的时空变化和潜在生态风险特征.结果表明,表层沉积物中重金属含量具有一定的空间差异性,As、Cd、Cu、Pb和Zn在中东部湖区含量较高,而Cr、Co、Ni含量高值位于南、北湖区的近岸区域;柱状沉积物中,1990s之前As、Cd、Cu、Pb和Zn含量较为稳定,1990s中后期以来,其含量逐渐增加,并在2009-2010年前后达到最大值,此后逐渐下降;而柱状沉积物中Cr、Co、Ni含量变化趋势与Al、Fe相似,总体上由下向上逐渐降低,这主要与沉积物质地(粒度)逐渐变粗有关.重金属富集系数表明,阳宗海沉积物中主要污染元素为As、Cd、Cu、Pb和Zn,1990s中后期污染程度快速增加,2009-2010年前后达到峰值,此后污染程度逐渐降低;表层沉积物中Cu为未污染至"弱"污染水平;Zn、Pb为"弱-中等"污染水平,As为"中等-强"污染水平,Cd为"弱-强"污染水平,中东部湖区污染程度高于其他湖区,这可能与该湖区缺少入湖径流、自然碎屑物质沉积速率较低以及砷污染事件等人为源的重金属贡献影响更为显著有关.生态风险评价结果表明,在2002-2010年前后沉积物重金属达到"中等-强"潜在生态危害,主要贡献因子是Cd和As,近年来其生态风险等级逐渐降低;表层沉积物中重金属在中东部湖区具有"中等"程度潜在生态危害,而其他湖区表层沉积物重金属具有较低程度的潜在生态风险.  相似文献   

7.
太湖流域西氿湖沉积岩芯中重金属污染及潜在生态风险   总被引:5,自引:1,他引:4  
通过对太湖流域西沈湖沉积物岩芯XJ2中Cu、Pb、Zn、Cd、Cr等5种重金属元素总量的分析,结合测年结果,揭示了不同时间段重金属污染物的分布特征,并利用Hakansen潜在生态风险评价法对沉积物岩芯的污染状况及潜在生态风险的历史变化进行了研究.结果表明岩芯受Cd元素污染最重,其它4种元素较Cd则轻得多,因此Cd元素是影响该地区沉积物潜在生态风险的绝对主导因素.从20世纪初叶开始,沉积物中的重金属元素污染及其相应的潜在生态风险开始上升,并且上升幅度不断加剧,到20世纪90年代达到最大值,沉积物污染及潜在生态风险级别均为"很高",随后便开始迅速下降,然而直到2004年这两个参数仍然维持在"很高"级别.  相似文献   

8.
为了解巢湖湖区及主要出入湖河流沉积物中重金属的污染特征,对表层沉积物中重金属元素含量进行分析,基于地积累指数法、潜在生态风险指数法和沉积物质量基准法对沉积物污染风险进行评价,并对沉积物重金属来源进行初步分析.结果表明,河流沉积物中重金属的平均含量显著高于湖区,是湖区沉积物重金属含量的1.18~5.15倍,其中南淝河Cu、Zn、Pb、As和Hg含量较高,分别是背景值的3.53、16.98、3.98、5.84和23.11倍,西半湖Cu、Zn、Pb、Cd和Hg平均含量要高于东半湖,是全湖平均的1.04~1.45倍.地积累指数法和Hkanson潜在生态风险指数法评价结果均表明,Cd和Hg是主要的生态风险贡献因子,在所调查的表层沉积物中Cd和Hg数值分别为43.17~3870.94和29.96~924.57,已处于较大风险数值.此外,源分析结果表明,巢湖湖区及主要出入湖河流表层沉积物中Cu、Zn、Pb、Cr、Hg和As相关性显著,具有相似的来源,可能来自于工业废水与生活污水.  相似文献   

9.
Alia?a Bay is one of the most important maritime zones of Turkey where shipping activity, shipbreaking industry, steel works and petrochemical complexes exist together. Concentrations of heavy metals and organic carbon in sediment of the Alia?a Bay were investigated to evaluate an environmental risk assessment from metals contamination in 2009-2010. Comparison of the metal concentrations with average shale and Mediterranean background levels revealed that most of the samples from the Alia?a were polluted with Hg, Cd, Pb, Cr, Cu, Zn, Mn and Ni. It was found that Hg, Pb, Cu, Zn and Ni levels in Alia?a Bay exceeded the PEL values. Sediments, contaminated with Pb, Cr, Cu, Zn and Ni were considered as heavily polluted per the SQG.  相似文献   

10.
苏州河网区河道沉积物重金属的污染特征   总被引:5,自引:0,他引:5  
分析测定了苏州河网区河道底泥十个剖面样点60个样品中Cu、Pb、Zn、Cr、Al、Fe、K、Mn、有机质、TP、TN、粒度、pH及含水量,采用地累积指数、生态风险指数和相关分析等方法研究其重金属污染特征.结果表明:Cu和Zn处于中或中-强度污染,Pb处于无-中污染,没有Cr污染;垂直分布特征显示:Cu和Zn污染逐年变化较为一致,Pb污染有逐年加重趋势;重金属潜在生态风险处于轻微污染状态;相关性分析显示,有机质是影响其分布的重要因素,Mn、Cr、Cu、Zn、Pb五种重金属相关性显著;通过与国内外河流、水库和湖泊沉积物中重金属含量比较,苏州河网区河道重金属的累积受多种因素影响.  相似文献   

11.
The concentration of heavy metals (Hg, Cd, Pb, Cu, Zn, Cr, Ni, Mn) and chloroorganic substances (γ-HCH, ΣDDT, PCB) in surface sediments of the Western and the Eastern Odra River was analyzed after the 1997 flood and compared with data from 1995. The research has shown that, like in 1995, the Western Odra sediments were more contaminated with heavy metals and PCBs than the Eastern Odra ones. In comparison with the state of 1995, after the flood in both arms of the Odra, the amount of Cr, Mn, and PCBs has increased while the amount of Pb concentration decreased. The levels of Cd, Zn, and Ni have remained unchanged. The changes of the other pollutants were not so clear. The concentration of Hg and Cu increased in the Western Odra, while it decreased in the Eastern Odra; changes of γ-HCH and ΣDDT content were inverted.  相似文献   

12.
We conducted an analysis of heavy metals content, including As, Cd, Cr, Cu, Hg, Pb, and Zn in sediments from aquatic ecosystems in China measured in recent publications. Then, we evaluated the extent of heavy metal pollution in these ecosystems in seven different industrial districts in China (Dongbei, Huabei, Huazhong, Huanan, Huaxik, Xibei, and Huadong) with the potential ecological risk index. We found that Cd was the most concentrated pollutant, followed by Hg and As, while Cr, Cu, Pb, Zn were found in low concentrations in sediments from all types of aquatic ecosystem in China. Sediments collected from all seven industrial districts were heavily polluted, and the sequence, from most to least polluted was Dongbei>Huabei>Huazhong>Huanan>Huaxi>Xibei>Huadong. All four types of aquatic ecosystem were found to be seriously polluted and the sequence, from most to least polluted was: river>sea>lake>wetland. Specifically, Cd and Hg were the most serious pollutants in all four aquatic ecosystems, and As was also a serious pollutant in rivers. For the seven industrial districts studied the sea was the most polluted ecosystem in Dongbei, the river was the most polluted ecosystem in Huabei, Huanan, Huazhong, and the lake was the most polluted in Huadong, Huaxi, and Xibei.  相似文献   

13.
抚仙湖沉积物重金属时空变化与人为污染评价   总被引:11,自引:3,他引:8  
分析了抚仙湖表层沉积物及沉积短岩芯中10种金属元素含量,结合沉积年代学,定量研究了Cr、Cu、Ni、Pb、Zn的污染特征及时空变化规律;参考沉积物质量基准与潜在生态风险指数法探讨了表层沉积物重金属的潜在生态风险.结果表明,表层沉积物中重金属含量具有一定的空间差异性,近岸地区重金属含量总体上高于湖心区;Pb、Zn含量自1980s中期以来逐渐增加,而Cr、Cu、Ni含量呈下降趋势.重金属富集系数与聚类分析结果表明,抚仙湖沉积物主要重金属污染元素为Pb、Zn,污染开始于1980s中期,并逐渐加重.表层沉积物中Pb、Zn富集系数分别为1.6~4.1和1.4~2.6,已达到弱—中等污染程度,北部湖区污染程度略高于南部湖区;除此之外,北部湖区近岸区域Cr污染程度也略高于其他湖区.除了大气沉降来源之外,抚仙湖沉积物重金属污染还可能与入湖河流输入有关.单因子生态风险指数表明,表层沉积物中Cr、Cu、Ni、Pb、Zn具有较低的潜在生态风险;而综合潜在生态风险指数表明,表层沉积物中重金属具有中等程度的潜在生态风险,这与根据沉积物质量基准所获得的评价结果一致.  相似文献   

14.
The purpose of this study was to assess the chemical partitioning of selected heavy metals(Fe,Mn,Cu,Zn,Pb,Cr,Co and Ni) in 10 surface sediments at Tirumalairajan River Estuary in the southeastern coast of India.A five-step sequential extraction technique was used to assess the environmental status of heavy metals.Most of metals were considered to be immobile due to the high availability in the residual fraction of heavy metals.The sediments of Tirumalairajan River estuary had not been polluted by heavy metals,and they didn’t pose any high ecological risk.The seasonal variations of heavy metals were slightly higher in summer than in monsoon season.Factor analysis was also carned out to understand the associations of metals in different fractions with sand,silt,clay,organic matter,pH,salinity and other metals.The relationship between the Q-mode and R-mode cluster analyses was useful for identifying the pollution levels in both seasons.It was proved that the enrichment of heavy metals was related with geogenic and anthropogenic sources.The information on total metal concentrations in sediments was not sufficient for assessing the metal behavior in the environment,but the sequential extraction technique was more effective in estimating the environmental impact of contaminated sediments.  相似文献   

15.
Surface soils (0–20 cm) were collected from along a tidal ditch of the Yellow River Estuary in August of 2007. Samples were subjected to a total digestion technique before they were analyzed for total concentrations of As, Cr, Cd, Cu, Ni, Pb, Zn, P and S in order to investigate heavy metal contamination levels in wetland soils nearby the tidal ditches and their main sources. Results showed that the mean concentrations of these heavy metals except for As and Cd were lower than the Class I criteria. Nearly all sampling sites showed lower contamination levels for As and Cd, while no contamination levels for other heavy metals. Cr, Cu, and Ni mainly originated from parent rocks, and Pb and As might originate from tidal seawater and oil field pollution, respectively; while Cd and Zn mainly originated from parent rocks and tidal seawater. Most of heavy metals showed significant correlations with total concentrations of P and S, however, no significant correlations were observed between them and soil pH, slat and soil organic matter.  相似文献   

16.
Sediment from twelve stations was sampled from the Tupilipalem Coast, southeast coast of India, and the presence of a set of heavy metals was established including iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn) and cadmium (Cd). The heavy metals were assessed by factor analysis, the results of which showed positive and/or negative correlations among Fe, Mn, Cr, Cu, Ni, Pb, Zn, and Cd. Factor analysis also indicated that heavy metals in the sediments of the study area have different natural and anthropogenic sources. Similarly, a sediment pollution assessment was done using the Geoaccumulation Index (Igeo), Enrichment Factor (EF), and Pollution Load Index (PLI). The Geoaccumulation Index indicated that the surface sediment of the Tupilipalem Coast was extremely contaminated with Fe, Mn, Cr, Cu, Ni, Pb, and Zn. The calculation of enrichment factors showed a significant enrichment with respect to Pb, Zn, and Cd and a moderate enrichment with Cr, Cu, and Ni. The falling trend of average contents’ enrichment factors is Cd> Pb> Zn> Cu> Cr> Ni> Mn> Fe. The PLI values of the Cd show higher (>1) values due to the influence of distinct external sources like agricultural runoff, industrial activities, and other anthropogenic inputs. Ninety two percent of heavy metals under study showed the highest concentrations at station TP-5 where the Buckingham Canal and other agricultural and aquacultural effluents connect with the Bay of Bengal. This location is the second inlet which is periodically closed and it seemed that these parts of the study area are heavily affected by anthropogenic pollution.  相似文献   

17.
利用富集因子和Hakanson潜在生态风险指数法,结合年代学结果,对长江中下游湖泊太白湖、龙感湖、巢湖和西氿沉积物中重金属元素Co、Cr、Cu、Ni、Pb、Zn的富集程度进行了评价,并比较分析了上述重金属的潜在生态风险.结果表明,太白湖和龙感湖沉积物中各重金属富集程度均较低;巢湖沉积物中Co、Cr、Ni的富集程度接近中等水平,而Cu、Pb、Zn的富集已经达到中等水平;西氿沉积物中Co的富集非常低,Cr、Ni富集水平较低,Pb达到中等富集,Cu、Zn达到较高的富集水平.对4个湖泊沉积物中重金属的综合污染程度进行比较:巢湖西氿龙感湖太白湖.各湖泊沉积物中单一元素的潜在生态风险都较低,但是,根据多元素潜在生态评价指数,各湖泊沉积物中重金属存在明显不同的潜在生态风险:巢湖西氿龙感湖太白湖.总体上看,太白湖和巢湖沉积物重金属污染以及潜在生态风险自1965年以来一直在加重,而龙感湖和西氿沉积物在表层有下降的趋势.这种差异与各个湖泊流域内人类活动的方式和强度密切相关.巢湖和西氿流域内城市化、工业化发展迅速,人类活动导致大量重金属元素进入湖泊,给湖泊带来明显的污染;而龙感湖和太白湖流域人类活动主要以农业活动为主,人类活动对重金属的贡献相对较小.  相似文献   

18.
Lei Gui  Peng  Shu-Chuan  Chen  Tian-Hu  Wang  Ji-Zhong 《Water Resources》2019,46(4):614-623
Water Resources - Heavy metal pollution in lacustrine sediments is a worldwide environmental issue. In the present study, eight heavy metals including Zn, Pb, Co, Cr, Cd, Mn, As and Cu in sediment...  相似文献   

19.
Salt marshes have recently been considered to be a major part of the coastal system and have played a key role in the development of the UK coastal management strategy. Managed Retreat (MR) is a process aimed to restore salt marshes by realignment of the seawalls allowing tidal inundation of low value agricultural land. The resultant marshes are expected to function both as an integral part of the flood defence system and as an ecological conservation area. We report on the effects of salt marsh restoration on metal and nutrient loading of the sediment at the Orplands Farm MR site, Essex, UK. Surficial grab and sediment cores were collected from the two fields that comprise the site. The heavy metals, Cd, Cr, Cu, Hg, Pb, Ni and Zn were analysed to determine changes in anthropogenic inputs to sediments. The major ions, Al, Ca, Fe, K, Mg, Mn and Na were also monitored to identify changes in sediment geochemistry. Analysis of the cored sediments after inundation for Na and Sr demonstrated that penetration of estuarine water had, within 2 yr of exposure, reached an average depth of 20 cm. The study observed that input of heavy metals had occurred to the sediments with the most significant being that of Pb, however increases were also observed for Cr and Cu. However, concentrations of Cd in the MR sediments decreased from 1995 to 1997. For the major metals within both fields it was found that the dominant changes were those of enrichment of marine associated metals, Ca, K, Mg and Na via inputs from tidal inundation. The concentration of Ca in the sediments was further enriched by the deposition of carbonates to the sediments. One field demonstrated a significant loss of Fe from sediments which corresponded to changes in redox potential of the sediments. Differences observed in geochemical profiles between the two fields of the site were attributed to differences in land use prior to flooding.  相似文献   

20.
Monthly measurements were made over a one-year period to determine the heavy metals Fe, Mn, Cd, Cr, Cu, Pb and Zn in the vertical profiles of Lake Constance (Obersee and Untersee) and Greifensee, by means of atomic absorption spectrometry. Fe and Mn exhibited the usual cyclical fluctuations depending on redox conditions in the hypolimnion. For Cd, Cr, Cu, Pb and Zn no concentration patterns were noted that would show their dependency on seasonal and vertical stratifications.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号