首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastie responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method.  相似文献   

2.
This paper investigates the characteristics of bending moments, shear forces and stresses at unit connections of very large floating structures (VLFS) under wave loads. The responses of VLFS are calculated by solving multi-body motion equation considering hydroelasticity and connection stiffness. Hydroelastic responses are calculated by the direct method. Higher-order boundary element method (HOBEM) is used for fluid analysis and finite element method (FEM) is introduced for structural analysis. The equation of motion is modified to describe the unit connections by employing spring elements. Bending moments and shear forces at the connections are obtained from the dynamic equilibrium condition for pressures and inertia forces. Two types of VLFS units such as tandem arranged units and side-by-side arranged units are considered in the numerical examples. The influences of connection stiffness, wave frequency and heading angle on responses of VLFS are investigated through the numerical examples. Rigid body analysis along with hydroelastic analysis is also carried out in the numerical analysis and comparison of those two approaches is discussed.  相似文献   

3.
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure (VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy''s law. The hybrid finite element-boundary element (FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves. Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.  相似文献   

4.
M.J. Fadaee  H. Saffari  R. Tabatabaei   《Ocean Engineering》2008,35(17-18):1854-1861
This paper uses theorem of shakedown to assess the shakedown limit of elastic–plastic offshore structures. For this aim, an envelope of elastic response of the structure to cyclic loading cases is required. The shakedown limit is basically a valid collapse mechanism and can be quantified using yield line analysis. In this work, Melan theorem of shakedown (lower bound) is employed. Requiring simple elastic envelope and the domain defining yield lines only are the advantages of the Melan theorem. The shakedown analysis can be conducted by the finite element method (FEM), which is the main body of this paper. In order to evaluate the method of this paper, which is in fact combining the Melan theorem and the FEM, two steel offshore frames are analyzed using the proposed method and the results obtained are compared with the results of classical non-linear analysis method.  相似文献   

5.
SUN  Hui 《中国海洋工程》2002,16(1):21-32
An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is on the effect of edge conditions and they assume that the plate is of a semi-infinite length. In reality, the plate is of finile length. For consider-alion of the finite length effect, the reflection and transmission from the other end must be considered. The effect of this reflection and transmission on the hydroelaslic response of VLFS is of interest for praclical application. Furthermore, the physi-cal meaning of the new inner producl was not given in their paper. In this paper, it is shown that the new inner product can be derived from the governing equation and the bottom boundary conditions. Then the same eigen-function expansion method is adopted for the study of the hydroelastic response of an elastic plate of finite length in surface waves. Delailed comparisons are made between the  相似文献   

6.
用直接法分析超大型浮体的水弹性响应   总被引:4,自引:2,他引:2  
探讨了浮舟桥型超大型浮体结构的水弹性响应分析问题。将超大型浮体结构简化成弹性平板模型,用压力分布法计算流体压力,用直接法计算流体-结构系统,给出了它们的数学计算模型。计算表明本计算方法和程序是正确的,并能保证充分的精度,进而计算了更大尺度的超大型浮体,分析了波长、波向等对响应振幅的影响。  相似文献   

7.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

8.
超大型浮体在海洋资源开发和海洋空间利用方面有重要应用前景.非均匀海洋环境中的水弹性响应是其应用中的一个重要问题.在近海中最典型的非均匀海洋环境当属由于底部变化引起的非均匀现象.本文分别采用多重尺度法(零阶近似)和常规的有限水深势流格林函数边界积分法,对底部呈二维缓变情况下超大型浮体的水弹性响应问题进行了研究和对比,并与实验工况进行了对照.两种方法与试验结果吻合较好,证明非均匀海洋环境确实对超大型浮体的水弹性响应具有一定的影响.  相似文献   

9.
开发并验证了一种基于CFD-FEM耦合的弹性浮体水弹性响应计算模拟方法。采用CFD方法建立黏性数值水池模拟非线性波浪,弹性浮板进行有限元离散,并在交界面进行数据交互实现耦合计算;通过与水池试验数据和三维板理论在各种波浪环境下的浮体垂向位移结果对比,证实CFD-FEM耦合方法的有效性。并进一步研究了浮板的厚度、入射波波幅和浮板的三维效应对浮板水弹性响应的影响。结论表明,波幅的增加会加剧弹性浮板的水弹性响应,浮板各点处的垂向位移随波幅的增加而增大;当浮板厚度改变时,不同厚度浮板自由端处的垂向位移差异较小,而在中部等位置处,厚度对浮板的水弹性响应有较大的影响。  相似文献   

10.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

11.
1 .IntroductionIntheexploitationofoceanresourcesandintheutilizationofoceanspaces,verylargefloatingstructures (VLFS)suchasMega FloatinJapan (Isobe ,1 999)andMobileOffshoreBase (MOB)inUSA (Remmers ,1 999)playasignificantrole .However,owingtotheirlargesizesandrelativelylowbendingrigidities ,theirhydroelasticresponsesinwavesareofthemostconcern .ManystudieshavebeencarriedoutforthepredictionofthehydroelasticresponsesofVLFS′s (Kashiwagi,2 0 0 0 ;Cui,2 0 0 2 ) .However,inalmostallofthesestu…  相似文献   

12.
The hydroelastic responses of a very-long floating structure (VLFS) placed behind a reverse T-shape freely floating breakwater with a built-in oscillating water column (OWC) chamber are analyzed in two dimensions. The Bernoulli–Euler beam equation is coupled with the equations of rigid and elastic motions of the breakwater and the VLFS. The interaction of waves between the floating rigid breakwater and the elastic VLFS is formulated in a consistent manner. It has been shown numerically that the structural deflections of the VLFS can be reduced significantly by a suitably designed reverse T-shape floating breakwater.  相似文献   

13.
采用弹性基础梁模型,模拟钢悬链线立管(steel catenary riser,SCR)与海床土的相互作用,推导了弹性基础梁模型的有限元公式,基于该模型编制了钢悬链式立管的动力分析程序,在此基础上,分析了在浮体运动及环境载荷作用下,钢悬链线立管触地点区域的动力响应特征,并与弹簧支撑模型进行了比较。研究表明,弹性基础梁模型对单元长度的敏感性较低,可采用较长的单元,从而减少计算量。  相似文献   

14.
利用有限元软件ABAQUS建立T型圆钢管节点热传导分析模型,通过与已有试验数据进行对比,验证了所建有限元模型的可靠性。利用提出的有限元模型分析了不同主管轴力作用下的T型圆钢管节点在火灾环境中的失效过程,研究了主管轴力对T型圆钢管节点临界温度的影响规律。分别讨论了采用屈服强度折减和弹性模量折减的方法预测T型圆钢管节点在高温下的极限承载力,并将预测结果和有限元分析结果进行了对比,给出了这两种方法用于工程设计时的建议。  相似文献   

15.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

16.
Wave-induced transient response of seabeds is numerically analyzed through a radial point interpolation meshless method (radial PIM). The Biot’s consolidation theory is employed and incorporated with virtual boundary conditions to describe this wave-induced transient response of the seabed. Displacement and pore water pressure are spatially discretized by the radial PIM with the same shape function. Compactly supported basis functions are proposed to obtain a banded system equation. Because the radial PIM passes through all nodal points within an influence domain, essential boundary conditions as well as virtual boundary conditions can be easily implemented at local level. Fully implicit integration scheme is used in time domain to avoid spurious ripple effect. The proposed algorithm is assessed through the comparison of numerical results with closed-form solution or finite element solutions.  相似文献   

17.
The uplift behavior of a plate anchor in a structured clay (soft Ariake clay) is investigated through a series of laboratory tests and method of finite element analysis. The tests are adopted to identify the factors influencing the behavior of the anchor, including the thixotropic nature of Ariake clay, consolidation time, and embedment ratio of the anchor. A finite element method (FEM) is used to analyze and predict the uplift behavior of the anchor plate well in the elastic region and the yield load. The results from both the laboratory tests and the FEM analysis suggest that the embedment ratio for a deep anchor in Ariake clay is close to 4. Further increase in embedment ratio improves the capacity to a lesser extent. FEM overestimates the failure load of the uplift anchor in soft Ariake clay by about 20%. This may be ascribed to the hypothesis in the FEM analysis that there is continuous contact between the clay and the anchor until failure. Vesic’s theory for deep anchors, which may be used to predict the ultimate pullout resistance of the plate anchor in reconstituted Ariake clay, is verified to be applicable. In this paper, the plastic flow zone around the anchor is discussed using FEM which makes the behavior of anchor more understandable during the design stage.  相似文献   

18.
This paper presents the use of a modular raft Wave Energy Converter (WEC)-type attachment at the fore edge of a rectangular Very Large Floating Structure (VLFS) for extracting wave energy while reducing hydroelastic responses of the VLFS under wave action. The proposed modular attachment comprises multiple independent auxiliary pontoons (i.e. modules) that are connected to the fore edge of the VLFS with hinges and linear Power Take-Off (PTO) systems. For the hydroelastic analysis, the auxiliary pontoons and the VLFS are modelled by using the Mindlin plate theory while the linear wave theory is used for modelling the fluid motion. The analysis is performed in the frequency domain using the hybrid Finite Element-Boundary Element (FE-BE) method. Parametric studies are carried out to investigate the effects of pontoon length, PTO damping coefficient, gap between auxiliary pontoons, and incident wave angle on the power capture factor as well as reductions in the hydroelastic responses of the VLFS with the modular attachment. It is found that in oblique waves, the modular attachment comprising multiple narrow pontoons outperforms the corresponding rigid attachment that consists of a single wide pontoon with respect to the power capture factor and the reduction in the deflection of the VLFS. In addition, it is possible to have a considerable gap between pontoons without significantly compromising the effectiveness of the modular attachment.  相似文献   

19.
不同干结构模型对箱式超大型浮体结构水弹性响应的影响   总被引:1,自引:7,他引:1  
三维线性水弹性力学利用结构在真空中弹性振型的正交性 ,对结构振动进行模态分析 ,用弹性体三维势流理论计算结构的水动力系数。因此 ,结构的干模态计算是十分重要的。应用三维线性水弹性理论研究箱式超大型浮体结构在波浪中的动力响应时 ,分别采用梁模型和三维空间有限元模型计算结构的干模态 ,并且采用同样的水动力模型 (弹性体三维势流理论 )研究了不同干结构模型对结构水弹性响应的影响  相似文献   

20.
The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号