首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flood risk assessment using regional regression analysis   总被引:2,自引:0,他引:2  
This study aimed to create a flood risk map for ungauged regions, which have limited flood damage data and other relevant data. The fact that there is a shortage of data that are critical for the establishment of a flood assessment and mitigation plan is not surprising even in developed countries like South Korea. To address this problem, the regional regression concept in statistical hydrology was introduced to the flood risk assessment field in this study, and it was framed with a series of two regression functions: flood damage and regional coefficients. As the second regression function utilizes the local socioeconomic variables, the resulting flood risk map can reflect the spatial characteristics well. The proposed methodology was applied to create flood risk maps for the three metropolitan areas in South Korea. The comparison of the proposed methodology with the existing methods revealed that only the proposed methodology can produce a statistically meaningful flood risk map based on a recent major flood in 2001.  相似文献   

2.
Economic damage assessment for flood risk estimation is established in many countries, but attentions have been focused on macro- or meso-scale approaches and less on micro-scale approaches. Whilst the macro- or meso-scale approaches of flood damage assessment are suitable for regional- or national-oriented studies, micro-scale approaches are more suitable for cost–benefit analysis of engineered protection measures. Furthermore, there remains lack of systematic and automated approaches to estimate economic flood damage for multiple flood scenarios for the purpose of flood risk assessment. Studies on flood risk have also been driven by the assumption of stationary characteristic of flood hazard, hence the stationary-oriented vulnerability assessment. This study proposes a novel approach to assess vulnerability and flood risk and accounts for adaptability of the approach to nonstationary conditions of flood hazard. The approach is innovative in which an automated concurrent estimation of economic flood damage for a range of flood events on the basis of a micro-scale flood risk assessment is made possible. It accounts for the heterogeneous distribution of residential buildings of a community exposed to flood hazard. The feasibility of the methodology was tested using real historical flow records and spatial information of Teddington, London. Vulnerability curves and residual risk associated with a number of alternative extents of property-level protection adoptions are estimated by the application of the proposed methodology. It is found that the methodology has the capacity to provide valuable information on vulnerability and flood risk that can be integrated in a practical decision-making process for a reliable cost–benefit analysis of flood risk reduction options.  相似文献   

3.
Flooding is a serious problem in Jakarta, and detailed estimation of flood damage is necessary to design optimal flood management strategies. This study aims to estimate flood damage in a densely populated area in Jakarta by means of a survey, to develop the relationship between flood characteristics and flood damage, and to compare the damage estimates from the survey with the damage estimates obtained by a flood damage model for Jakarta, i.e. the damage scanner model. We collected data on economic losses of the January 2013 flood in a survey of flood-affected households and business units in Pesanggrahan River. The actual flood damage in the survey area is US$ 0.5 million for the residential sector and US$ 0.7 million for the business sector. The flood damage for a similar event in the same area based on the damage scanner model is estimated to be US$ 1.3 million for the residential sector and US$ 9.2 million for the business sector. The flood damage estimates obtained by the survey approach are lower compared to the damage scanner approach due to different ways in obtaining flood damage data and in defining the maximum flood damage per object, the different spatial levels of analysis, and uncertainties in constructing the flood damage curves that were applied in the damage scanner model.  相似文献   

4.
In recent years, through the availability of remotely sensed data and other national datasets, it has become possible to conduct national-scale flood risk assessment in England and Wales. The results of this type of risk analysis can be used to inform policy-making and prioritisation of resources for flood management. It can form the starting point for more detailed strategic and local-scale flood risk assessments. The national-scale risk assessment methodology outlined in this paper makes use of information on the location, standard of protection and condition of flood defences in England and Wales, together with datasets of floodplain extent, topography, occupancy and asset values. The flood risk assessment was applied to all of England and Wales in 2002 at which point the expected annual damage from flooding was estimated to be approximately £1 billion. This figure is comparable with records of recent flood damage. The methodology has subsequently been applied to examine the effects of climate and socio-economic change 50 and 80 years in the future. The analysis predicts increasing flood risk unless current flood management policies, practices and investment levels are changed – up to 20-fold increase in real terms economic risk by the 2080s in the scenario with highest economic growth. The increase is attributable primarily to a combination of climate change (in particular sea level rise and increasing precipitation in parts of the UK) and increasing economic vulnerability.  相似文献   

5.
The paper analyses the causes of flood occurrence in the Gran La Plata, Buenos Aires Province, Argentina, and the changes that have occurred since the 1970s. The area is characterized by serious deficiencies in the use and management of water resources. The main factors are: (1) flood risk information is not updated; (2) urban building organization does not consider the flood risk; (3) the topography and other physical features are not taken into account in urban development. This research considers some specific problems, especially in data availability, and suggests ways to solve them, including improved analytical methodology. One of the main objectives is to analyse flood risk in social terms, producing a map of flood risk from the “human social vulnerability” point of view. The results suggest that flood risk has increased since the 1980s and that this is associated with changes in precipitation patterns that have also been aggravated by lack of controls on urban development. The poorer areas with the lowest level of infrastructure and public services, many of them developed over the last quarter-century, are especially vulnerable.  相似文献   

6.
Flood events have the highest damage costs and losses among natural hazards. There are different types of measures to mitigate flood damage costs and their negative consequences. Application of flood-control reservoirs or detention dams, as one of the main measures, may decrease devastating flood effects or even may cause to intensify flood damages in the watershed by a poor design with tremendous construction costs. Optimal design of a flood-control multi-reservoir system can simultaneously minimize investment costs of constructions and potential flood damage costs. This study proposes a simulation-based optimization approach to optimize the design of multi-reservoirs for flood control in the watershed by coupling the MIKE-11 hydrodynamic model and the NSGA-II multi-objective optimization model. The present approach provides the Pareto optimal solutions between two conflict objectives of minimizing total investment costs and the expected flood damage costs in the watershed. Application of the proposed model for a small watershed in central part of Iran as a case study shows that optimal designs of multi-reservoir systems can efficiently reduce construction costs, flood peaks and their corresponding damage costs at the downstream reaches of the basin.  相似文献   

7.
Large national budgets are required for flood damage reduction projects, making it critical to ensure that public money used therein be spent efficiently. Accordingly, reliable assessment of flood damage is a critical issue in analysis of the economic aspects of flood damage reduction projects. To this end, this study aims to provide a GIS (geographical information system)-based technique for distributed flood damage assessment. We consider two aspects of flood damage assessment from an engineering and economic perspective, i.e. flood inundation analysis and multi-dimensional flood damage analysis (MD-FDA). To perform this assessment, we used a GIS-based framework and data processing method to assess damages. The proposed methodology was applied to flood control channel projects for flood disaster prevention in the Anyang Stream Basin in Korea and presents detailed GIS data processing and assessment results. Findings from this study may contribute to the improvement of usability of MD-FDA and may provide research directions for integrating economic and engineering factors. This distributed technique will also assist in the decision-making process when evaluating the economic feasibility of flood damage reduction projects for structural and non-structural measures.  相似文献   

8.
Despite massive investment in flood control infrastructure (FCI), neither cities nor rivers have been well served—flooding continues to challenge cities around the world, while riverine ecosystems are degraded by FCI. Although new flood hazard management concepts have shifted the focus away from FCI, many cities continue to count on FCI to prevent flood damage. It is assumed that existing built-up areas can only count on FCI, as large-scale retreat is often impossible. However, flood adaptation—retrofitting the built environment to prevent damage during flooding—as an option is often ignored. This paper argues against the continual use of FCI to prevent flood damage by reviewing FCI’s established problems. The paper examines human–river interactions associated with FCI, focusing on the feedback mechanisms in the interactions, with a case study on the Lower Green River (LGR) valley in King County, Washington, USA. An urban ecology research model is employed to organize the case study, where interactions between floodplain urbanization, FCI, flow and sediment changes, flood risk, and riverine ecosystem are explored and two feedback mechanisms—river adjustment and flood risk perception—are explicitly addressed. The resulting complex dynamics, in terms of cross–scale interactions, emergence, nonlinearity, and surprises, are synthesized and limitations of FCI outlined. Flood adaptation is explored as a plausible alternative to flood control to nurture flood resilience. A management scenario of flood adaptation for the City of Kent—the largest municipality in the LGR valley—is developed to discuss the implications of flood adaptation on flood risk and river restoration.  相似文献   

9.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2003,30(1):25-41
This is the second part of our study on the assessment of seismic hazard and seismic risk for Tulbagh, the settlement, located about 90 km N-E from Cape Town, where the strongest and most damaging earthquake known in the existing earthquake history of South Africa took place. This part of our study, which can be read independently from Part I, concentrates on the probabilistic seismic risk analysis (PSRA) forTulbagh. The work begins with an introduction and a historical perspective on the estimation of seismic damage to buildings. The methodology for the estimation of expected damage from a probabilistic point of view is then presented. The work closes with an application of the described methodology to a site in the vicinity of Tulbagh.  相似文献   

10.
In this paper, a new methodology has been developed for real-time flood management in river-reservoir systems. This methodology is based upon combining a Genetic Algorithm (GA) reservoir operation optimization model for a cascade of two reservoirs, a hydraulic-based flood routing simulation model in downstream river system, a Geographical Information System (GIS) based database, and application of K-Nearest Neighbor (K-NN) algorithm for development of optimal operating rules. The GA optimization model estimates the optimal hourly reservoirs’ releases to minimize the flood damages in the downstream river. GIS tools have also been used for specifying different land-uses and damage functions in the downstream floodplain and it has been linked to the unsteady module of HEC-RAS flood routing model using Hec-GeoRAS module. An innovative approach has also been developed using K-NN algorithm to formulate the optimal operating rules for a system of two cascade reservoirs based on optimal releases obtained from the optimization model. During a flood event, the K-NN algorithm searches through the historical flood hydrographs and optimal reservoir storages determined by the optimization model to find similar situations. The similarity between the hydrographs is quantified based on the slopes of rising and falling limbs of inflow hydrographs and reservoir storages at the beginning of each hourly time step during the flood events for two cascade reservoirs. The developed methodology have been applied to the Bakhtiari and Dez River-Reservoir systems in southwest of Iran. The results show that the proposed models can be effectively used for flood management and real-time operation of cascade river-reservoir systems.  相似文献   

11.
Bracken  L. J.  Oughton  E. A.  Donaldson  A.  Cook  B.  Forrester  J.  Spray  C.  Cinderby  S.  Passmore  D.  Bissett  N. 《Natural Hazards》2016,82(2):217-240
River flooding is a serious hazard in the UK with interest driven by recent widespread events. This paper reviews different approaches to flood risk management and the borders (physical, conceptual and organisational) that are involved. The paper showcases a multi-method approach to negotiating flood risk management interventions. We address three fundamental issues around flood risk management: differences and similarities between a variety of approaches; how different approaches work across borders between professionals, lay people, organisations and between different planning regimes; and, whether the science evidence base is adequate to support different types of flood risk management. We explore these issues through a case study on the River Tweed using Q methodology, community mapping and focus groups, participatory GIS, and interviews, which enabled co-production of knowledge around possible interventions to manage flooding. Our research demonstrated that excellent networks of practice exist to make decisions about flood risk management in the Scottish–English borders. Physical and organisational borders were continually traversed in practice. There was an overwhelming desire from professional flood managers and local communities for an alternative to simply structural methods of flood management. People were keen to make use of the ability of catchments to store water, even if land needed to be sacrificed to do so. There was no difference in the desire to embrace natural flood management approaches between people with different roles in flood management, expertise, training or based in different locations. Thus conceptual borders were also crossed effectively in practice.  相似文献   

12.
洪水灾害风险管理广义熵智能分析的理论框架   总被引:4,自引:0,他引:4       下载免费PDF全文
基于洪水灾害风险管理的背景分析,提出用广义分布函数及其广义熵理论统一描述、物理解析洪水灾害风险管理系统的各种不确定性信息。基于洪水灾害风险形成机制和风险管理理论与水利科学、信息科学、智能科学综合集成途径,提出由洪水灾害孕灾环境和致灾因子危险性广义熵智能分析、承灾体易损性广义熵智能分析、承灾体灾情广义熵智能分析和风险决策广义熵智能分析组成的洪水灾害风险管理广义熵智能分析的初步理论框架及其主要研究内容,在其它灾害风险管理中具有一定的参考应用价值。  相似文献   

13.
With the recent transition to a more risk-based approach in flood management, flood risk models—being a key component in flood risk management—are becoming increasingly important. Such models combine information from four components: (1) the flood hazard (mostly inundation depth), (2) the exposure (e.g. land use), (3) the value of elements at risk and (4) the susceptibility of the elements at risk to hydrologic conditions (e.g. depth–damage curves). All these components contain, however, a certain degree of uncertainty which propagates through the calculation and accumulates in the final damage estimate. In this study, an effort has been made to assess the influence of uncertainty in these four components on the final damage estimate. Different land-use data sets and damage models have been used to represent the uncertainties in the exposure, value and susceptibility components. For the flood hazard component, inundation depth has been varied systematically to estimate the sensitivity of flood damage estimations to this component. The results indicate that, assuming the uncertainty in inundation depth is about 25 cm (about 15% of the mean inundation depth), the total uncertainty surrounding the final damage estimate in the case study area can amount to a factor 5–6. The value of elements at risk and depth–damage curves are the most important sources of uncertainty in flood damage estimates and can both introduce about a factor 2 of uncertainty in the final damage estimates. Very large uncertainties in inundation depth would be necessary to have a similar effect on the uncertainty of the final damage estimate, which seem highly unrealistic. Hence, in order to reduce the uncertainties surrounding potential flood damage estimates, these components deserve prioritisation in future flood damage research. While absolute estimates of flood damage exhibit considerable uncertainty (the above-mentioned factor 5–6), estimates for proportional changes in flood damages (defined as the change in flood damages as a percentage of a base situation) are much more robust.  相似文献   

14.
The downstream effects of flood risk mitigation measures and the necessity to develop flood risk management strategies that are effective on a basin scale call for a flood risk assessment methodology that can be applied at the scale of a large river. We present an example of a rapid flood risk assessment methodology for the Elbe River. A 1D hydraulic routing model is extended by including the effect of planned (regulated and unregulated) and unintended retention (dike breaches) on the peak water levels. We further add an inundation model for dike breaches due to dike overtopping and a macroscale economic approach to assess the flood damage. The flexible approach to model the effects of measures by means of volume storage functions allows for rapid assessment of combinations of retention measures of various proposed dimensions and at multiple locations. The method allows for the comparison of the flood risk at the scale of the main river trajectory, which has not been possible for the Elbe River to date. The model is applied to a series of exemplary flood risk mitigation measures to show the downstream effects and the additive effects of combinations of measures on the flood risk along the river. We further demonstrate the increase in the downstream flood risk resulting from unilateral decisions to increase the dike height at upstream locations. As expected, the results underline the potential effectiveness of increased retention along the river. The effects of controlled retention at the most upstream possible location and largest possible extent generate the most pronounced reduction of average annual damage. As expected, the effect of uncontrolled retention with dike relocations is significantly lower.  相似文献   

15.
洪水灾害分析与评估的综合集成方法   总被引:31,自引:1,他引:30       下载免费PDF全文
从系统论的观点出发,提出了洪水灾害复杂大系统的概念,讨论了该系统的组成特征及其高维性、动态性、复杂性等特征和基于定性与定量的综合集成方法,探讨了洪水灾害系统模拟、预测、评估与决策的综合分析方法。为进一步开展洪水灾害的管理与调控方法的研究奠定了基础,并将有利于促进资源、环境与社会的协调发展。  相似文献   

16.
In recent decades, population growth associated with unplanned urban occupation has increased the vulnerability of the Brazilian population to natural disasters. In susceptible regions, early flood forecasting is essential for risk management. Still, in Brazil, most flood forecast and warning systems are based either on simplified models of flood wave propagation through the drainage network or on stochastic models. This paper presents a methodology for flood forecasting aiming to an operational warning system that proposes to increase the lead time of a warning through the use of an ensemble of meteorological forecasts. The chosen configuration was chosen so it would be feasible for an operational flood forecast and risk management. The methodology was applied to the flood forecast for the Itajaí-Açu River basin, a region which comprises a drainage area of approximately 15,500 km2 in the state of Santa Catarina, Brazil, historically affected by floods. Ensemble weather forecasts were used as input to the MHD-INPE hydrological model, and the performance of the methodology was assessed through statistical indicators. Results suggest that flood warnings can be issued up to 48 h in advance, with a low rate of false warnings. Streamflow forecasting through the use of hydrological ensemble prediction systems is still scarce in Brazil. To the best of our knowledge, this is the first time this methodology aiming to an operational flood risk management system has been tested in Brazil.  相似文献   

17.
Dam-break floods have been of increasing concern to safety engineers and decision makers. The presence of complex terrain in inundation areas multiplies the simulation difficulty of flood routing. In previous studies, representing the flood routing parameters empirically does not reflect the characteristics of flood routing, which strongly influences the accurate assessment of the dam-break consequences. The basis for carrying out dangerous reservoir reinforcement is just engineering safety, without considering the actual situation of downstream areas. In this study, a comprehensive risk analysis of the dam-break flood was implemented based on the numerical simulation of flood routing. First, coupled with the volume of fluid method, a three-dimensional k? turbulence mathematical model was developed for flood routing in complex inundation areas. Then, based on the flow parameters obtained through computational fluid dynamics modeling, the attribute measure methodology was used for the evaluation of consequences combined with the calculation of the dam-break consequences (loss of life, economic loss, social and environmental influence). Furthermore, a methodology containing the combined weight method and the technique for order performance by similarity to ideal solution method was proposed for risk ranking of dangerous reservoirs due to its logical consideration of scalar values that simultaneously account for both the best and worst alternatives. Finally, a sensitivity analysis was performed to provide information about the stability of risk ranking. The aforementioned model and methodology are applied to a case involving five reservoirs in the Haihe River Basin in China for Part II of this study.  相似文献   

18.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   

19.
The production of flood hazard assessment maps is an important component of flood risk assessment. This study analyses flood hazard using flood mark data. The chosen case study is the 2013 flood event in Quang Nam, Vietnam. The impacts of this event included 17 deaths, 230 injuries, 91,739 flooded properties, 11,530 ha of submerged and damaged agricultural land, 85,080 animals killed and widespread damage to roads, canals, dykes and embankments. The flood mark data include flood depth and flood duration. Analytic hierarchy process method is used to assess the criteria and sub-criteria of the flood hazard. The weights of criteria and sub-criteria are generated based on the judgements of decision-makers using this method. This assessment is combined into a single map using weighted linear combination, integrated with GIS to produce a flood hazard map. Previous research has usually not considered flood duration in flood hazard assessment maps. This factor has a rather strong influence on the livelihood of local communities in Quang Nam, with most agricultural land within the floodplain. A more comprehensive flood hazard assessment mapping process, with the additional consideration of flood duration, can make a significant contribution to flood risk management activities in Vietnam.  相似文献   

20.
Remote sensing is the most practical method available to managers of flood-prone areas for quantifying and mapping flood impacts. This study explored large inundation areas in the Maghna River Basin, around the northeastern Bangladesh, as determined from passive sensor LANDSAT data and the cloud-penetrating capabilities of the active sensors of the remote imaging microwave RADARSAT. This study also used passive sensor LANDSAT wet and dry images for the year 2000. Spatial resolution was 30 m by 30 m for comparisons of the inundation area with RADARSAT images. RADARSAT images with spatial resolution of 50 m by 50 m were used for frequency analysis of floods from 2000 to 2004. Time series images for 2004 were also used. RADARSAT remote sensing data, GIS data, and ground data were used for the purpose of flood monitoring, mapping and assessing. A supervised classification technique was used for this processing. They were processed for creating a maximum water extent map and for estimating inundation areas. The results of this study indicated that the maximum extent of the inundation area as estimated using RADARSAT satellite imaging was about 29, 900.72 km2 in 2004, which corresponded well with the heavy rainfall around northeast region, as seen at the Bhairab Bazar station and with the highest water level of the Ganges–Brahmaputra–Meghna (GBM) Rivers. A composite of 5 years of RADARSAT inundation maps from 2000 to 2004, GIS data, and damage data, was used to create unique flood hazard maps. Using the damage data for 2004 and the GIS data, a set of damage maps was also created. These maps are expected to be useful for future planning and flood disaster management. Thus, it has been demonstrated that RADARSAT imaging data acquired over the Bangladesh have the ability to precisely assess and clarify inundation areas allowing for successful flood monitoring, mapping and disaster management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号