首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface to atmosphere exchange has received much attention in numerical weather prediction models. This exchange is defined by turbulent parameters such as frictional velocity, drag coefficient and heat fluxes, which have to be derived experimentally from high-frequency observations. High-frequency measurements of wind speed, air temperature and water vapour mixing ratio (eddy covariance measurements), were made during the Integrated Ground Observation Campaign (IGOC) of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) at Mahabubnagar, India (16°44N, 77°59E) in the south-west monsoon season. Using these observations, an attempt was made to investigate the behaviour of the turbulent parameters, mentioned above, with respect to wind speed. We found that the surface layer stability derived from the Monin–Obukhov length scale, is well depicted by the magnitude of wind speed, i.e., the atmospheric boundary layer was under unstable regime for wind speeds >4 m s?1; under stable regime for wind speeds <2 m s?1 and under neutral regime for wind speeds in the range of 2–3 m s?1. All the three stability regimes were mixed for wind speeds 3–4 m s?1. The drag coefficient shows scatter variation with wind speed in stable as well as unstable conditions.  相似文献   

2.
Hurricane storm surge simulations for Tampa Bay   总被引:1,自引:0,他引:1  
Using a high resolution, three-dimensional, primitive equation, finite volume coastal ocean model with flooding and drying capabilities, supported by a merged bathymetric-topographic data set and driven by prototypical hurricane winds and atmospheric pressure fields, we investigated the storm surge responses for the Tampa Bay, Florida, vicinity and their sensitivities to point of landfall, direction and speed of approach, and intensity. All of these factors were found to be important. Flooding potential by wind stress and atmospheric pressure induced surge is significant for a category 2 hurricane and catastrophic for a category 4 hurricane. Tide, river, and wave effects are additive, making the potential for flood-induced damage even greater. Since storm surge sets up as a slope to the sea surface, the highest surge tends to occur over the upper reaches of the bay, Old Tampa Bay and Hillsborough Bay in particular. For point of landfall sensitivity, the worst case is when the hurricane center is positioned north of the bay mouth such that the maximum winds associated with the eye wall are at the bay mouth. Northerly (southerly) approaching storms yield larger (smaller) surges since the winds initially set up (set down) water level. As a hybrid between the landfall and direction sensitivity experiments, a storm transiting up the bay axis from southwest to northeast yields the smallest surge, debunking a misconception that this is the worst Tampa Bay flooding case. Hurricanes with slow (fast) translation speeds yield larger (smaller) surges within Tampa Bay due to the time required to redistribute mass.  相似文献   

3.
Combined effects of hurricane wind and surge can pose significant threats to coastal cities. Although current design codes consider the joint occurrence of wind and surge, information on site-specific joint distributions of hurricane wind and surge along the US Coast is still sparse and limited. In this study, joint hazard maps for combined hurricane wind and surge for Charleston, South Carolina (SC), were developed. A stochastic Markov chain hurricane simulation program was utilized to generate 50,000 years of full-track hurricane events. The surface wind speeds and surge heights from individual hurricanes were computed using the Georgiou’s wind field model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, respectively. To validate the accuracy of the SLOSH model, the simulated surge levels were compared to the surge levels calculated by another state-of-the-art storm surge model, ADCIRC (Advanced Circulation), and the actual observed water elevations from historical hurricane events. Good agreements were found between the simulated and observed water elevations. The model surface wind speeds were also compared with the design wind speeds in ASCE 7-10 and were found to agree well with the design values. Using the peak wind speeds and maximum surge heights, the joint hazard surfaces and the joint hazard maps for Charleston, SC, were developed. As part of this study, an interactive computer program, which can be used to obtain the joint wind speed and surge height distributions for any location in terms of latitude and longitude in Charleston area, was created. These joint hazard surfaces and hazard maps can be used in a multi-hazard design or risk assessment framework to consider the combined effects of hurricane wind and surge.  相似文献   

4.
Lu  Yunmeng  Liu  Tiezhong  Wang  Tiantian 《Natural Hazards》2021,106(3):2003-2024

Storm surge induced by hurricane is a major threat to the Gulf Coasts of the United States. A numerical modeling study was conducted to simulate the storm surge during Hurricane Michael, a category 5 hurricane that landed on the Florida Panhandle in 2018. A high-resolution model mesh was used in the ADCIRC hydrodynamic model to simulate storm surge and tides during the hurricane. Two parametric wind models, Holland 1980 model and Holland 2010 model, have been evaluated for their effects on the accuracy of storm surge modeling by comparing simulated and observed maximum water levels along the coast. The wind model parameters are determined by observed hurricane wind and pressure data. Results indicate that both Holland 1980 and Holland 2010 wind models produce reasonable accuracy in predicting maximum water level in Mexico Beach, with errors between 1 and 3.7%. Comparing to the observed peak water level of 4.74 m in Mexico Beach, Holland 1980 wind model with radius of 64-knot wind speed for parameter estimation results in the lowest error of 1%. For a given wind model, the wind profiles are also affected by the wind data used for parameter estimation. Away from hurricane eye wall, using radius of 64-knot wind speed for parameter estimation generally produces weaker wind than those using radius of 34-knot wind speed for parameter estimation. Comparing model simulated storm tides with 17 water marks observed along the coast, Holland 2010 wind model using radius of 34-knot wind speed for parameter estimation leads to the minimum mean absolute error. The results will provide a good reference for researchers to improve storm surge modeling. The validated model can be used to support coastal hazard mitigation planning.

  相似文献   

5.
Storm surge models usually do not take into account the explicit effect of wind gusts on the sea surface height. However, as the wind speed enters quadratically into the shallow water equations, short-term fluctuations around the mean value do not average out. We investigate the impact of explicitly added gustiness on storm surge forecasts in the North Sea, using the WAQUA/DCSM model. The sensitivity of the model results to gustiness is tested with Monte Carlo simulations, and these are used to derive a parametrisation of the effect of gustiness on characteristics of storm surges. With the parametrisation and input from the ECMWF model archive, we run hindcasts for a few individual cases and also the 2007–2008 winter storm season. Although the explicit inclusion of gustiness increases the surge levels, it does not help to explain, and hence reduce, the errors in the model results. Moreover, the errors made by ignoring gustiness are small compared to other errors. We conclude that, at present, there is no need to include gustiness explicitly in storm surge calculations for the North Sea.  相似文献   

6.
High-quality informations on sea level pressure and sea surface wind stress are required to accurately predict storm surges over the Korean Peninsula. The storm surge on 31 March 2007 at Yeonggwang, on the western coast, was an abrupt response to mesocyclone development. In the present study, we attempted to obtain reliable surface winds and sea level pressures. Using an optimal physical parameterization for wind conditions, MM5, WRF and COAMPS were used to simulate the atmospheric states that accompanied the storm surge. The use of MM5, WRF and COAMPS simulations indicated the development of high winds in the strong pressure gradient due to an anticyclone and a mesocyclone in the southern part of the western coast. The response to this situation to the storm surge was sensitive. A low-level warm advection was examined as a possible causal mechanism for the development of a mesocyclone in the generating storm surge. The low-level warm temperature advection was simulated using the three models, but MM5 and WRF tended to underestimate the warm tongue and overestimate the wind speed. The WRF simulation was closer to the observed data than the other simulations in terms of wind speed and the intensity of the mesocyclone. It can be concluded that the magnitude of the storm surge at Yeonggwang was dependent, not only on the development of a mesocyclone but on ocean effects as well.  相似文献   

7.
A high-resolution storm surge model of Apalachee Bay in the northeastern Gulf of Mexico is developed using an unstructured grid finite-volume coastal ocean model (FVCOM). The model is applied to the case of Hurricane Dennis (July 2005). This storm caused underpredicted severe flooding of the Apalachee Bay coastal area and upriver inland communities. Accurate resolution of complicated geometry of the coastal region and waterways in the model reveals processes responsible for the unanticipated high storm tide in the area. Model results are validated with available observations of the storm tide. Model experiments suggest that during Dennis, excessive flooding in the coastal zone and the town of St. Marks, located up the St. Marks River, was caused by additive effects of coincident high tides (~10–15% of the total sea-level rise) and a propagating shelf wave (~30%) that added to the locally wind-generated surge. Wave setup, the biggest uncertainty, is estimated on the basis of empirical and analytical relations. The Dennis case is then used to test the sensitivity of the model solution to vertical discretization. A suite of model experiments is performed with varying numbers of vertical sigma (σ) levels, with different distribution of σ-levels within the water column and a varying bottom drag coefficient. The major finding is that the storm surge solution is more sensitive to resolution within the velocity shear zone at mid-depths compared to resolution of the upper and bottom layer or values of the bottom drag coefficient.  相似文献   

8.
大型浅水湖泊水动力模型不确定性和敏感性分析   总被引:5,自引:0,他引:5       下载免费PDF全文
选取国内外常用的水动力学模型(EFDC)和典型的浅水湖泊(太湖),采用拉丁超立方取样(LHS),研究湖泊水动力模块中常用的5个重要参数(风拖曳系数、床面粗糙高度、涡粘性系数、紊流扩散系数以及风遮挡系数)对湖体水位和流速的影响。结果表明:针对大型浅水湖泊,湖泊岸线形状和湖底地形、湖泊周围地形、湖泊水面风场对模拟结果产生决定性影响。尤其是在湖湾区和周边地形比较复杂的地区,风场参数对水动力模拟结果不确定性的贡献率最大。在垂向上,表层流速受到参数不确定性的影响最大,底层次之,中层最小。床面粗糙高度对水动力模拟结果不确定性贡献率较风场参数要小,水体涡粘滞系数和扩散系数影响则更小。故在选择大型浅水湖泊水动力模型参数时,要充分考虑湖泊岸线和周围地形,着重率定风场参数以及床面粗糙高度。  相似文献   

9.
A high-resolution unstructured grid two-dimensional finite-element model was applied to simulate the storm surge associated with the October 2010 extratropical storm in Lake Winnipeg. The wind and pressure fields from two high-resolution weather forecast models were used to drive the hydrodynamic model. The model results were compared with the observed water levels at several stations during the storm event. The model-predicted storm surge in the range of 0.6–1.5 m is comparable with observations in the southern basin of Lake Winnipeg. Model results are further analyzed to assess the transport of water between north and south basins of Lake Winnipeg during the event. Computed water surface elevations at specific locations at the outlet of the rivers and embayments indicate that the model needs some improvements in terms of grid resolution in those areas.  相似文献   

10.
The speeds of historical cool-season extratropical cyclones along the U.S. east coast, hereafter East Coast Winter Storms (ECWS), occurring during the period from 1951 to 2006 were computed. Average storm speed was 13.8 ms−1 with stronger storms generally moving faster than weaker storms and faster storms forming during the midwinter months (December–March). There was no clear trend in ECWS speed during the time period, although considerable season-to-season variability was present. The monthly and seasonal variations in storm speed could not be attributed to the El Ni?o-Southern Oscillation or North Atlantic Oscillation (NAO) alone. However, the speed of ECWS was considerably slower when both El Ni?o and the negative phase of NAO occurred simultaneously. Characteristic patterns in the upper levels of the atmosphere, specifically 300 hPa zonal winds and 500 hPa geopotential heights, were present during periods when ECWS speeds were among the slowest (and separately fastest). For slow storm speed, these patterns also prevailed during months in which El Ni?o and negative NAO phase occurred. These patterns were also present during months with extended runs of high oceanic storm surge. This provides a qualitative link between the atmospheric conditions associated with slow storms and potentially high coastal storm surge impacts. Among the prime consequences of ECWS speed are extended periods of high storm surge, mainly due to slow-moving storms. The sustained high tidal levels often lead to substantial damage caused by coastal flooding, overwash, and beach erosion.  相似文献   

11.
Momentum and energy exchange at air–sea interface through wind stress is very important for air–sea interaction studies, ocean modeling, and climate studies. The accurate representation of wind stress, in terms of drag coefficient, is a key factor in estimating the momentum transfer at the interface. The drag coefficient, in general, estimated using bulk formulae does not take into account the influence of wave age. This study examines the dependence of wave age on computed surface drag coefficient obtained by combining the Toba 3/2-power law with Froude number scaling, resulting in a new drag formulation (hereafter referred as RP formulation). We demonstrate that our proposed formulation is in good conjunction with established theories for both young and mature waves. Our investigation shows the theoretical formulation advocated earlier by Guan and Xie (hereafter referred as GX) overestimated the surface drag for mature waves as wind speed tends to increase. In addition, the formulation by GX was not verified by observational data. In the present work, for validation purpose, we use time series measurement of meteorological and oceanographic data from a deep water location in the Indian Ocean which was tested with both RP and GX formulations. We find that the proposed RP formulation, which embeds the 3/2 power of wave-age, shows a better match for both young and mature waves with the results of Janssen compared to the hypothesis of conventional wave age used by GX.  相似文献   

12.
All the available historic records of sea level and appropriate weather charts have been used to study storm surges in the northern part of the Sea of Japan. The generation of surges in this area was investigated by means of a two-dimensional numerical model. Computed sea levels were compared with hourly observed residual sea levels in De-Kastri. The agreement between computed and observed storm surges is quite satisfactory. The relative importance of various meteorological parameters and bottom topography in formation of the strong storm surge on 20–21 September 1975 was studied numerically.  相似文献   

13.
Frequent occurrence of fog in different parts of northern India is common during the winter months of December and January. Low visibility conditions due to fog disrupt normal public life. Visibility conditions heavily affect both surface and air transport. A number of flights are either diverted or cancelled every year during the winter season due to low visibility conditions, experienced at different airports of north India. Thus, fog and visibility forecasts over plains of north India become very important during winter months. This study aims to understand the ability of a NWP model (NCMRWF, Unified Model, NCUM) with a diagnostic visibility scheme to forecast visibility over plains of north India. The present study verifies visibility forecasts obtained from NCUM against the INSAT-3D fog images and visibility observations from the METAR reports of different stations in the plains of north India. The study shows that the visibility forecast obtained from NCUM can provide reasonably good indication of the spatial extent of fog in advance of one day. The fog intensity is also predicted fairly well. The study also verifies the simple diagnostic model for fog which is driven by NWP model forecast of surface relative humidity and wind speed. The performance of NWP model forecast of visibility is found comparable to that from simple fog model driven by NWP forecast of relative humidity and wind speed.  相似文献   

14.
北京2002年3月20~21日尘暴过程的降尘量与降尘粒度特征   总被引:27,自引:3,他引:24  
本文对2002年3月20~21日发生在北京地区的一次尘暴过程进行了降尘量和降尘粒度的研究。通过对分时段监测取得的13组降尘样品进行降尘量和粒度测定,结合风速变化情况,可将本次尘暴分为尘暴前期和尘暴后期两个过程。降尘量和粒度参数值在尘暴前期和后期都呈现不同特征。结论认为,风速是降尘量变化的重要因素。当风速进一步增大时,降尘量反而有所下降。说明北京地区尘暴降尘量除受本地风速影响外,还与粉尘浓度等特征有关。尘暴降尘的粒度基本呈双峰态分布。本次尘暴初始降尘主要为细粒径颗粒,尘暴前期降尘粒径随风速而变化,尘暴后期降尘粒径基本维持在5~6之间  相似文献   

15.
ABSTRACT

This study investigates the storm surge caused by Typhoon Hato, which severely affected Macau, Hong Kong, and other coastal cities in China on 23 August 2017. A typhoon and storm surge coupling model demonstrated that the maximum storm surge height reached nearly 2.5?m along the coast of Macau, while that in Hong Kong was slightly below 2?m. Furthermore, a field survey of urban flooding revealed evidence of a 2.25-m inundation in downtown Macau and a 0.55-m inundation on Lantau Island, Hong Kong, which were likely exacerbated by a combination of storm surge, heavy rainfall, and surface water runoff over a complex hilly terrain. Significant wave overtopping and runup also occurred in beach and port areas. A typhoon track analysis confirmed that several comparably strong typhoons have followed similar ESE to WNW trajectories and made landfall in the Pearl River Delta in the last few decades. Although Hato was not the strongest of these storms, its forward speed of about 32.5?km/h was remarkably faster than those of other comparable typhoons. Higher levels of storm signal warnings were issued earlier in Hong Kong than in Macau, raising questions about the appropriate timing of warnings in these two nearby areas. Our analysis of the storm’s pattern suggests that both regions’ decisions regarding signal issuance could be considered reasonable or at least cannot be simply blamed, given the rapid motion and intensification of Hato and the associated economic risks at stake.  相似文献   

16.
Coastal flooding occurs due to storm surges generated by tropical and extra-tropical cyclones on the globe. The meteorological forcing fields for the generation of storm surges are the tangential surface wind stress on the ocean surface and the normal atmospheric pressure gradients associated with the weather systems. The large scale forcing from the cyclones is referred to as the synoptic scale and storm surge prediction from synoptic scale forcing is well developed and is reasonably satisfactory around the world. However, coastal flooding also occurs from weather systems, with forcing on a meso-scale and also from remote forcing. It is proposed here that the term “Storm surge” be used to only refer to coastal flooding from synoptic scale forcing and the terminology “Rissaga” be used for coastal flooding from meso-scale forcing. For flooding due to remote forcing, a new term “Kallakkadal” is proposed.  相似文献   

17.
在全球变暖的背景下,南极已成为全球气候变化研究的热点,然而其区域内的观测站点稀疏且缺乏较长的时间序列,限制了人们对南极气候变化机制的分析与理解。Polar WRF作为目前最先进的极地区域气候模型之一,有力弥补了观测资料不足的缺陷,然而模式存在误差,在应用之前有必要对其定量评估。本文利用Polar WRF3.9.1对2004-2013年南极冰盖2m气温、10m风速和地表气压进行了数值模拟,并与28个气象站数据进行了对比分析,结果表明:模式对气温的模拟值在东南极沿岸偏低,在内陆偏高,在南极半岛既存在冷偏差也存在暖偏差,而对风速和气压的模拟整体呈高估。而从均方根误差和平均绝对误差的空间分布来看,模式对气温和气压的模拟结果在东南极沿岸的精度高于内陆和南极半岛,而风速则在内陆的精度要高于沿岸地区。但总体来说模拟效果较为理想,在2004-2013年间气温、风速、气压的模拟值的变化趋势与实测值的变化趋势相同。模式模拟的年平均2m气温和近地面气压在所有站点都通过了α=0.1的显著性检验,季节误差和月误差整体较小,且所有月份的相关系数都分别大于0.90与0.79。模式对10m风速的模拟精度要略低,部分沿岸站点的年平均误差超过了7.5m·s^(-1),但整体而言其在四季和各个月份的相关性均大于0.5且误差小于4.5m·s^(-1)。虽然Polar WRF作为天气模式,但在模拟长时间尺度的气候方面仍然表现较好。  相似文献   

18.
Overwash is a major controlling factor in the morphology of the mixing zone of coastal aquifers. Conceptual models of the mixing zone describe an interface controlled by tidal oscillations, wave run-up, and other factors; however, few describe the influence of large storm events. In August 1993, Hatteras Island, North Carolina, USA, experienced a 3-m storm surge due to Hurricane Emily. Sound-side flooding infiltrated a wellfield, causing a dramatic increase in TDS levels that persisted for more than 3 years. Two-dimensional simulations with SUTRA, the USGS finite-element model, are calibrated to the TDS breakthrough data of this storm to infer model dispersivity values. Simulations using the calibrated dispersivity values, predicted flooding levels, and 54 years of hurricane records to determine the influence of the overwash events suggest that it is rare for the mixing zone to approximate the conceptual morphology. Even during quiescent periods such as between 1965 and 1975, TDS levels do not return to theoretical levels before being elevated by a subsequent storm event. Thus, while tidal oscillations and other factors are important to mixing zone development, basic wind events and more severe storm events may have more influence and lasting effect on the morphology of the mixing zone.  相似文献   

19.
Two-dimensional (2D) and three-dimensional (3D) hydrodynamic models are used to simulate the hurricane-induced storm surge and coastal inundation in regions with vegetation. Typically, 2D storm surge models use an enhanced Manning coefficient while 3D storm surge models use a roughness height to represent the effects of coastal vegetation on flow. This paper presents a 3D storm surge model which accurately resolves the effects of vegetation on the flow and turbulence. First, a vegetation-resolving 1DV Turbulent Kinetic Energy model (TKEM) is introduced and validated with laboratory data. This model is both robust enough to accurately model flows in complex canopies, while compact and efficient enough for incorporation into a 3D storm surge-wave modeling system: Curvilinear Hydrodynamics in 3D-Surface WAves Nearshore (CH3D-SWAN). Using the 3D vegetation-resolving model, three numerical experiments are conducted. In the first experiment, comparisons are made between the 2D Manning coefficient approach and the 3D vegetation-resolving approach for simple wind-driven flow. In a second experiment, 2D and 3D representations of vegetation produce similar inundations from the same hurricane forcing, but differences in momentum are found. In a final experiment, varying inundation between seemingly analogous 2D and 3D representations of vegetation are demonstrated, pointing to a significant scientific need for data within wetlands during storm surge events. This study shows that the complex flow structures within vegetation canopies can be accurately simulated using a vegetation-resolving 3D storm surge model, which can be used to assess the feasibility for future wetland restoration projects.  相似文献   

20.
为了研究北方浅水湖泊冬季结冰对风生流的影响,采用MIKE21构建山东省聊城市东昌湖水动力学模型,分析真实风场作用下6种风应力拖曳系数对应的模拟流速与实测数据的差异,进一步讨论了冰盖面积对模拟结果产生的影响。结果表明,风应力拖曳系数为随风速连续变化比设置为常数模拟精度提高20%左右,其中采用微风条件下的风应力拖曳系数表达式模拟效果最好。此外,冬季水体结冰对风生流数值模拟影响较大,尤其是在被冰盖所覆盖的水域,风应力对水体流动的作用减弱甚至被抵消。与传统的风生流模拟相比,在北方浅水湖泊冬季风生流模拟中,引入冰场或是对风应力拖曳系数进行相应调整是有必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号