首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the first paleostress results obtained from displacement and fracture systems within the Lower Eocene sediments at Jabal Hafit, Abu Dhabi Emirate, UAE. Detailed investigation of Paleogene structures at Jabal Hafit reveal the existence of both extensional structures (normal faults) and compressional structures (strike-slip and reverse faults). Structural analysis and paleostress reconstructions show that the Paleogene kinematic history is characterized by the succession of four paleostress stages. Orientation of principal stresses was found from fault-slip data using an improved right-dihedra method, followed by rotational optimisation (TENSOR program).The paleostress results confirm four transtensional tectonic stages (T1–T4) which affected the study area. The first tectonic stage (T1) is characterized by SHmax NW–SE σ2-orientation. This stage produced NW–SE striking joints (tension veins) and E–W to ENE–WSW striking dextral strike-slip faults. The proposed age of this stage is Early Eocene. The second stage (T2) had SHmax N–S σ2-orientation. N–S striking joints and NNE–SSW striking sinistral strike-slip faults, E–W striking reverse faults and N–S striking normal faults were created during this stage. The T2 stage is interpreted to be post-Early Eocene in age. The third stage (T3) is characterized by SHmax E–W σ2-orientation. This stage reactivated the E–W reverse faults as sinistral strike-slip faults and created E–W striking joints and NE–SW reverse faults. The proposed age for T3 is post-Middle Eocene. During the T3 (SHmax E–W σ2-orientation) stage the NNW-plunging Hafit anticline was formed. The last tectonic stage that affected the study area (T4) is characterized by SHmax NE–SW σ2-orientation. During this stage, the ENE–WSW faults were reactivated as sinistral strike-slip and reverse faults. NE–SW oriented joints were also created during the T4 (SHmax NE–SW σ2-orientation) stage. The interpreted age of this stage is post-Middle Miocene time but younger than T3 (SHmax E–W σ2-orientation) stage.  相似文献   

2.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   

3.
During Eocene to Early Quaternary period, three compressive tectonic phases are recognized in Northeast Tunisia: a NW–SE to north–south phase during the Late Eocene, a N120-to-N140 phase in the Late Miocene, and a NW–SE to north–south phase in the Plio-Early Quaternary. The first Eocene phase has built NE–SW folds and remobilised east–west-to-N120 and NE–SW faults with a reverse component. The second Miocene phase is characterized by east–west-to-N120 faults with a normal component and NE–SW folds. The third phase occurred during the Plio-Early Quaternary has edified NE–SW folds associated with east–west-to-N120 dextral reverse strike-slip faults and NE–SW faults with a reverse component. To cite this article: H. Mzali, H. Zouari, C. R. Geoscience 338 (2006).  相似文献   

4.
The late Eocene to Neogene tectonic evolution of the Dinarides is characterised by shortening and orogen-parallel wrenching superposed on the late Cretaceous and Eocene double-vergent orogenic system. The Central Dinarides exposes NW-trending tectonic units, which were transported towards the Adria/Apulian microcontinent during late Cretaceous–Palaeogene times. These units were also affected by subsequent processes of late Palaeogene to Neogene shortening, Neogene extension and subsidence of intramontane sedimentary basins and Pliocene–Quaternary surface uplift and denudation. The intramontane basins likely relate to formation of the Pannonian basin. Major dextral SE-trending strike-slip faults are mostly parallel to boundaries of major tectonic units and suggest dextral orogen-parallel wrenching of the whole Central Dinarides during the Neogene indentation of the Apulian microplate into the Alps and back-arc type extension in the Pannonian basin. These fault systems have been evaluated with the standard palaeostress techniques. We report four palaeostress tensor groups, which are tentatively ordered in a succession from oldest to youngest: (1) Palaeostress tensor group 1 (D1) of likely late Eocene age indicates E–W shortening accommodated by reverse and strike-slip faults. (2) Palaeostress tensor group 2 (D2) comprises N/NW-trending dextral and W/WSW-trending sinistral strike-slip faults, as well as WNW-striking reverse faults. These indicate NE–SW contraction and subordinate NW–SE extension related to Oligocene to early Miocene shortening of the Dinaric orogenic wedge. (3) Palaeostress tensor group 3a (D3a) comprises mainly NW-trending normal faults, which indicate early/middle Miocene NE–SW extension related to syn-rift extension in the Pannonian basin. The subsequent palaeostress tensor group 3b (D3b) includes NE-trending, SE-dipping normal faults indicating NW–SE extension, which is likely related to further extension in the Pannonian basin. (4) Palaeostress tensor group 4 (D4) is characterised by mainly NW-trending dextral and NE-trending sinistral strike-slip faults. Together, with some E-trending reverse faults, they indicate roughly N–S shortening and dextral wrenching during late Miocene to Quaternary. This is partly consistent with the present-day kinematics, with motion of the Adriatic microplate constrained by GPS data and earthquake focal mechanisms. The north–north-westward motion and counterclockwise rotation of the Adriatic microplate significantly contribute the shortening and present-day wrenching in the Central Dinarides.  相似文献   

5.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

6.
The western edge of Patagonia, south of 47°S, experienced a major tectonic reorganization during the Tertiary. The Chile ridge, separating Nazca from Antarctica, collided obliquely with western Tierra del Fuego at about 14 Ma and the triple point migrated northwards to its present position at about 47°S. Consequently, the southern tip of South America has passed from a Miocene context of rapid oblique convergence (ENE–WSW at about 9 cm/yr) between Nazca and South America, to a Pliocene context of slow frontal convergence (EW at about 2 cm/yr) between Antarctica and South America. The Andean foreland fold-and-thrust belt lies on the eastern side of the Patagonian Cordillera and is well exposed along the northern shore of Lago Viedma (49°30′S). Structural observations, digital mapping, subsurface data, balancing of a cross-section and kinematic analysis of fault populations provide new information on the structure of the fold-and-thrust belt, the timing and style of deformation and their relationship with Tertiary plate tectonics. Along the studied transect, synsedimentary structures show that compressional deformation began at least during the Late Cretaceous, was ongoing during the syntectonic emplacement of the Lower Miocene granitic Monte Fitz Roy pluton and continued into the Pliocene. Folds and thrusts are thick-skinned in the west, and mostly thin-skinned above a décollement in Early Cretaceous black shales in the east. Analysis of fault populations, measured within Jurassic basement and its Cretaceous cover, provides subhorizontal principal directions of shortening, striking between E–W and ENE–WSW. Compressional deformation was associated with a major component of right-lateral wrenching parallel to the Cordillera.  相似文献   

7.
The tectonic effects of the Thulean mantle plume on the opening of the North Atlantic Ocean is still poorly understood. An analysis of the brittle deformation affecting the Late Cretaceous Chalk and Lower Tertiary igneous formations cropping out in Ulster (Northern Ireland), part of the Thulean Province, leads to the recognition of two tectonic phases. Each of these phases is characterized by different stress regimes with similar trends of the horizontal maximum principal stress σH. The first phase, syn-magmatic and dominated by NE–SW to ENE–WSW extension, occurred during the Palaeocene. It is followed by a second post-magmatic phase, characterized initially by a probably Eocene strike-slip to compressional palaeo-stress regime with σ1 (=σH) trending NE–SW to NNE–SSW associated with the partial reactivation (as reverse faults) of normal faults formed during the first phase NE–SW extension. This episode is postdated by an Oligocene extension, with σH (=σ2) still striking NNE–SSW/NE–SW, which reactivated Eocene strike-slip faults as nearly vertical dip-slip normal faults. This Palaeogene tectonic evolution is consistent with the tectonic evolution of similar age in western Scotland and in the Faeroe Islands. In particular, the post-magmatic NE–SW compression is here related to the ‘Faeroe compressive event’, which is related to the earliest stages of drift of the Greenland plate.  相似文献   

8.
柴达木盆地狮子沟-油砂山构造带变形特征及成因模拟   总被引:3,自引:0,他引:3  
通过地震剖面解释、平衡剖面编制、构造物理模拟等综合研究,认为狮子沟-油砂山构造带具有垂向分层、走向分段变形特征.垂向上以T3地震反射层为界划分为深、浅两个构造层,深层变形样式为正断层组成的地堑、半地堑、反转半地堑组合,浅层变形样式为滑脱断层、冲起背斜构造组合.走向上可划分为狮子沟、油砂山、大乌斯三个构造段,其变形样式分...  相似文献   

9.
《Geodinamica Acta》2003,16(2-6):99-117
The Bielsa thrust sheet is a south-verging unit of the Axial zone in the central Pyrenees. The Bielsa thrust sheet consists predominantly of a Variscan granite unconformably overlain by a thin cover of Triassic and Cretaceous deposits. During the Eocene–Oligocene, Pyrenean compression, displacement of the Bielsa thrust sheet generated a large-scale south-verging monocline. Low temperature deformation of the Bielsa thrust sheet resulted in the development of: (1) E–W trending, asymmetric folds in the Triassic cover with amplitudes up to 1.5 km; these folds of the cover are related with normal and reverse faults in the granite and with rigid-body block rotations. (2) Pervasive fracturing within the Bielsa granite is also attributed to Pyrenean deformation and is consistent with a NNE to ENE shortening direction; two main, conjugate fault systems are associated with this direction of shortening, as is a subvertical strike-slip system with shallow-plunging slickenside lineations and a moderately dipping fault system with reverse movement; and (3) in addition, we recognise strike-slip and reverse shear bands, associated with sericitisation and brittle deformation of quartz and feldspar in the granite, that enclose Triassic rocks. Basement deformation within the Bielsa thrust sheet can be related to movement of faults developed to accommodate internal deformation of the hanging wall. Several models are proposed to account for this deformation during the southward displacement of the thrust.  相似文献   

10.
梁承华  徐先兵  李启铭  桂林  汤帅 《地球科学》2019,44(5):1761-1772
华南中-新生代构造演化受太平洋构造域和特提斯洋构造域的联合控制.以江南东段NE-SW向景德镇-歙县剪切带和球川-萧山断裂中发育的脆性断层为研究对象,利用野外交切关系和断层滑移矢量反演方法厘定了7期构造变形序列并反演了各期古构造应力场,讨论了断层活动的时代及其动力学.白垩纪至新生代研究区7期古构造应力场分别为:(1)早白垩世早期(136~125Ma)NW-SE向伸展;(2)早白垩世晚期(125~107Ma)N-S向挤压和E-W向伸展;(3)早白垩世末期至晚白垩世早期(105~86Ma)NW-SE向伸展;(4)白垩世中期(86~80Ma)NW-SE向挤压和NE-SW向伸展;(5)晚白垩世晚期至始新世末期(80~36Ma)N-S向伸展;(6)始新世末期至渐新世早期(36~30Ma)NE-SW向挤压和NW-SE向伸展;(7)渐新世早期至中新世中期(30~17Ma)NE-SW向伸展.结合区域地质研究表明,第1期至第4期古构造应力场与古太平洋构造域的板片后撤、俯冲以及微块体(菲律宾地块)间的碰撞作用有关;第5期伸展作用受控于新特提斯构造域俯冲板片后撤,而第6期和第7期古构造应力场主要与印-亚碰撞的远程效应有关.白垩纪至新生代,华南东部受伸展构造体制和走滑构造体制的交替控制.先存断裂的发育可能是导致华南晚中生代走滑构造体制的主要控制因素.  相似文献   

11.
The Triassic to Cretaceous sediment succession of the Lechtal Nappe in the western part of the Northern Calcareous Alps (NCA) has been deformed into large-scale folds and crosscut by thrust and extensional faults during Late Cretaceous (Eoalpine) and Tertiary orogenic processes. The following sequence of deformation is developed from overprinting relations in the field: (D1) NW-vergent folds related to thrusting; (D2) N–S shortening leading to east–west-trending folds and to the formation of a steep belt (Arlberg Steep Zone) along the southern border of the NCA; (D3) E–W to NE–SW extension and vertical shortening, leading to low-angle normal faulting and recumbent “collapse folds” like the Wildberg Syncline. D1 and D2 are Cretaceous in age and predate the Eocene emplacement of the Austroalpine on the Penninic Nappes along the Austroalpine basal thrust; the same is probably true for D3. Finally, the basal thrust was deformed by folds related to out-of-sequence thrusting. These results suggest that the NCA were at least partly in a state of extension during the sedimentation of the Gosau Group in the Late Cretaceous.  相似文献   

12.
The Southeast Anatolian orogen is a part of the eastern Mediterranean-Himalayan orogenic belt. Development of the Southeast Anatolian orogen began with the first ophiolite obduction onto the Arabian platform during the Late Cretaceous, and it continued until the Miocene. Its lingering effects continue to be discernible at present. During the Late Cretaceous-Miocene interval, three major deformational phases occurred, related to Late Cretaceous, Eocene, and Miocene nappe emplacements. The Miocene nappes are composed of ophiolites and metamorphic massifs.

For a decade, field studies in the region have shown that strike-slip tectonics played a role complementary to the major horizontal effects of the nappe movement, as indicated by: (1) fault systems active during the Eocene; (2) different Eocene rock units composed of coeval continental and deep-sea deposits and presently tectonically juxtaposed; and (3) other stratigraphic and structural data obtained across the present strike-slip fault zones.

These strike-slip faults possibly resulted from oblique subduction of the mid-oceanic ridge underneath the northerly situated Yuksekova ensimatic island-arc complex, causing a gradual cessation of the island-arc system. The subduction also led to the development of a back-arc pull-apart basin, i.e., the Maden basin, which opened on the upper plate. The geologic history in Southeast Anatolia resembles the development of the San Andreas fault system and subsequent tectonic evolution.  相似文献   

13.
Kilometer-scale, shallowly dipping, NW-striking top-to-the NE reverse and dextral strike-slip shear zones occur in metamorphic rocks of north Golpaygan. These metamorphic rocks are exposed at the NE margin of the central part of the Sanandaj–Sirjan zone in the hinterland of the Zagros orogen. NW-striking top-to-the NE normal shear zones were also found in a small part of the study area. Structural evidence of three deformation stages were found. Pre-mylonitization metamorphic mineral growth happened during D1. The main mylonitization event was during the D2 deformational event, following coaxial refolding, synchronous to retrograde metamorphism of amphibolite to greenschist facies in the Late Cretaceous–Paleocene, and before D3 folding and related mylonitization. We documented the systematic changes in the orientations of D2 linear fabrics especially stretching lineations and superimposition relations of structures. It is concluded that the dextral strike-slip and dip-slip shear zones were coeval kinematic domains of partitioned dextral transpression. The shallowly dipping reverse and strike-slip shear zones are compatible with partitioning in a very inclined transpressional model. Fabric relations reflect that the top-to-the NE normal shear zones were not produced during deformation partitioning of inclined dextral transpression. The Late Cretaceous–Paleocene strain partitioning was followed by later N–S shortening and NE-extension in the north Golpaygan area.  相似文献   

14.
The Durkan Complex is a tectonic element of the Makran Accretionary Prism (SE Iran) that includes fragments of Late Cretaceous seamounts. In this paper, the results of map- to micro-scale structural studies of the western Durkan Complex are presented with the aim to describe its structural and tectono-metamorphic evolution. The Durkan Complex consists of several tectonic units bordered by mainly NNW-striking thrusts. Three main deformation phases (D1, D2, and D3) are distinguished and likely occurred from the Late Cretaceous to the Miocene–Pliocene. D1 is characterized by sub-isoclinal to close and W-verging folds associated with an axial plane foliation and shear zone along the fold limbs. This phase records the accretion of fragments of the seamount within the Makran at blueschist facies metamorphic conditions (160–300 °C and 0.6 – 1.2 GPa). D2 is characterized by open to close folds with sub-horizontal axial plane that likely developed during the exhumation of previously accreted seamount fragments. An upper Paleocene – Eocene siliciclastic succession unconformably sealed the D1 and D2 structures and is, in turn, deformed by W-verging thrust faults typical of D3. The latter likely testifies for a Miocene – Pliocene tectonic reworking of the accreted seamount fragments with the activation of out of sequence thrusts. Our results shed light on the mechanism of accretion of seamount materials in the accretionary prisms, suggesting that seamount slope successions favour the localization and propagation of the basal décollement. This study further confirms that the physiography of the subducting plates plays a significant role in the tectonic evolution of the subduction complexes.  相似文献   

15.
The Tan-Lu fault zone (TLFZ) traverses the Liaohe western depression (LHWD), affords an exceptional opportunity to reveal the structural deformation and evolution of a major strike-slip fault of the LHWD using three dimensional seismic data and well data. In this paper, based on structural interpretations of the 3-D seismic data of the LHWD, combined with depth slice and seismic coherency, a variety of structural features in relation to right-lateral strike-slip fault (the western branch of the Tan-Lu fault) have been revealed presence in the depression, such as thrust faults (Xinlongtai, Taian-Dawa, and Chenjia faults), structural wedges, positive flower structures, and en echelon normal faults. Fault cutoffs, growth strata and the Neogene unconformity developed in the LHWD verify that the activity of right-lateral strike-slip from the late Eocene to Neogene (ca. 43–23 Ma). The study indicates that the right-lateral strike-slip played an important role in controlling the structural deformation and evolution of the LHWD in the early Cenozoic. Moreover, the front structural wedge generated the gross morphology of the Xinlongtai anticline and developed the Lengdong faulted anticline during the late Eocene, and the back structural wedge refolded the Lengdong faulted anticline zone in the late Eocene to the early Oligocene. Wrench-related structures (the Chenjia thrust fault and the en echelon normal faults) were developed during the late Oligocene. Uniform subsidence in the Neogene to Quaternary. Furthermore, the driving force of the right-lateral strike-slip deformation was originated from N–S extension stress related to the opening of the Japan Sea and NE–SW compression, as the far-field effect of India–Eurasia convergence.  相似文献   

16.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

17.
The NE to ENE trending Mesozoic Xingcheng-Taili ductile shear zone of the northeastern North China Craton was shaped by three phases of deformation. Deformation phase D1 is characterized by a steep, generally E–W striking gneissosity. It was then overprinted by deformation phase D2 with NE-sinistral shear with K-feldspar porphyroclasts forming a subhorizontal low-angle stretching lineation on a steep foliation. During deformation phase D3, lateral motion accommodated by ENE sinistral strike-slip shear zones dominated. Associated fabrics developed at upper greenschist metamorphic facies conditions and show the deformation characteristics of middle- to shallow crustal levels. In some parts, the older structures have been in turn overprinted by late-stage sinistral D3 shearing. Finite strain and kinematic vorticity in all deformed granitic rocks indicate a prolate ellipsoid (L-S tectonites) near plane strain. Simple shear-dominated general shear during D3 deformation is probably of general significance. The quartz c-axis textures indicate prism-gliding with a dominant rhomb <a> slip and basal <a> slip system formed mainly at low-middle temperatures. Mineral deformation behavior, quartz c-axis textures, quartz grain size and the Kruhl thermometer demonstrate that the ductile shear zone developed under greenschist facies metamorphic conditions at deformation temperatures ranging from 400 to 500 °C. Dislocation creep is the main deformation mechanism at a shallow crustal level. Fractal analysis showed that the boundaries of recrystallized quartz grains had statistically self-similarities. Differential stresses deduced from dynamically recrystallized quartz grain size are at around 20–39 MPa, and strain rates in the order of 10−12 to 10−14 s−1. This indicates deformation of granitic rocks in the Xingcheng-Taili ductile shear zone at low strain rates, which is consistent with most other ductile shear zones. Hornblende-plagioclase thermometer and white mica barometer indicate metamorphic conditions of medium pressures at around ca. 3–5 kbar and temperatures of 400–500 °C within greenschist facies conditions. The main D3 deformation of the ENE-trending sinistral strike-slip ductile shearing is related to the roll-back of the subducting Pacific plate beneath the North China Craton.  相似文献   

18.
The ca. 700-km-long Yalu River Fault Zone (YRFZ) in East China, adjacent to the Pacific Ocean, underwent a polyphase evolution during the Cretaceous when it controlled the development of rift basins interrupted by several shortening events. The East China continent lies in an overriding plate with respect to the subducting Paleo-Pacific Plate during the Cretaceous. The YRFZ is ideal for studying the episodicity of stress state in the overriding plate. To constrain the polyphase evolution of the YRFZ, structural observations, fault-slip data measurements and LA–ICP–MS zircon U–Pb dating on Cretaceous volcanic rocks and sandstones were undertaken in this study. The first deformation (D1) is characterized by sinistral strike-slip shear in the earliest Cretaceous. The D2 event is featured by normal faulting deformation along the fault zone, which led to development of rift basins during the rest of the Early Cretaceous. Sinistral faulting (D3) developed again in the earliest Late Cretaceous, followed by dextral normal faulting (D4) and rift basin development during the rest of the Late Cretaceous, and finally reverse dextral faulting (D5) at the end of the Cretaceous. The fault-slip data show that compressional directions during D1, D3 and D5 faulting events are N–S, N–S and E–W respectively. Extensional directions during D2 and D4 faulting events are NW–SE and N–S. The zircon U–Pb ages indicate that the Early Cretaceous basins (D2 event) controlled by the YRFZ were active between 131 and 100 Ma, and the Late Cretaceous basins (D4 event) were active between 97 and 70 Ma. These U–Pb ages, together with previous geochronological data, show that the D1 and D3 episodes of compression each lasted 3 Ma, D2 extension lasted 31 Ma, and D4 extension 27 Ma. These data indicate an episodicity in the stress state with longer periods of extension and shorter periods of compression. A slab-driven model with relatively long periods of low-velocity subduction alternating with shorter periods of high-velocity subduction could account for the episodicity of stress state in the overriding plate from D1 to D5.  相似文献   

19.
The Navalpino Anticline is a major Variscan structure in the Central Iberian Zone of Spain. Three lithological groups are defined in the pre-Ordovician rocks of this anticline. The Rifean or Lower Vendian Extremeño Dome Group is unconformably overlain by the Upper Vendian Ibor-Navalpino Group. This latter group presents two different facies separated by a NW-SE trending synsedimentary fault. The Lower Cambrian Valdelacasa Group unconformably overlies both the Extremeno Dome and the Ibor-Navalpino Groups.Three pre-Variscan episodes of deformation have been defined in the area of the Navalpino Anticline. A major asymmetrical fold with a subvertical east-west-striking limb is the result of the first deformation event of pre-Late Vendian age. The second deformation event is of Cadomian (Late Precambrian) age and is composed of two stages; (i) an early extensional stage including NW - SE trending extensional fault and basin development in the north-eastern block; and (ii) a second compressive stage giving rise to north-south trending upright folds. This second compressive stage possibly inverted the basin. A final pre-Variscan deformation event took place between the Early Cambrian and the Early Ordovician resulting in a 5–10° tilting to the north-east.There are two main phases of Variscan deformation in the area. The first deformation event (Dv1) gave rise to a upright WNW - ESE trending folds on all scales, whereas the second (Dv2) gave rise to a brittle—ductile sinistral strike-slip shear zone tending subparallel to the axial trace of the Dv1 folds.  相似文献   

20.
The Teloloapan volcanic arc in SW Mexico represents the easternmost unit of the Guerrero Terrane. It is overthrust by the Arcelia volcanic unit and is thrust over the Guerrero–Morelos carbonate platform. These major structures result from two closely related tectonic events: first, an eastward verging, ductile deformation (D1) characterized by an axial-plane schistosity (S1) supporting an E–W trending mineral stretching lineation (L1) and associated with synschistose isoclinal, curvilinear folds (F1). Numerous kinematic indicators such as asymmetrical pressure-shadows, porphyroclast systems, and micro-shear bands (S–C structures) indicate a top-to-the-east shear along L1. This first deformation was followed by another ductile event (D2) that produced a crenulation cleavage (S2) associated with westward overturned folds (F2), hence showing that the vergence of D2 is opposite to that of D1. Regionally, both D1 and D2 deformations have been identified east and west of the Teloloapan unit, in the Arcelia volcanic rocks as well as in the Mexcala flysch of Late Cretaceous age overlying the Guerrero–Morelos platform. This implies that all three units were deformed and thrust simultaneously, during the Late Cretaceous or Paleocene, prior to the deposition of the overlying, undeformed Eocene red beds of the Balsas group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号