首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the 30th of December 2002 two tsunamis were generated only 7 min apart in Stromboli, southern Tyrrhenian Sea, Italy. They represented the peak of a volcanic crisis that started 2 days before with a large emission of lava flows from a lateral vent that opened some hundreds of meters below the summit craters. Both tsunamis were produced by landslides that detached from the Sciara del Fuoco. This is a morphological scar and is the result of the last collapse of the northwestern flank of the volcanic edifice, that occurred less than 5 ka b.p. The first tsunami was due to a submarine mass movement that started very close to the coastline and that involved about 20×106 m3 of material. The second tsunami was engendered by a subaerial landslide that detached at about 500 m above sea level and that involved a volume estimated at 4–9×106 m3. The latter landslide can be seen as the retrogressive continuation of the first failure. The tsunamis were not perceived as distinct events by most people. They attacked all the coasts of Stromboli within a few minutes and arrived at the neighbouring island of Panarea, 20 km SSW of Stromboli, in less than 5 min. The tsunamis caused severe damage at Stromboli.In this work, the two tsunamis are studied by means of numerical simulations that use two distinct models, one for the landslides and one for the water waves. The motion of the sliding bodies is computed by means of a Lagrangian approach that partitions the mass into a set of blocks: we use both one-dimensional and two-dimensional schemes. The landslide model calculates the instantaneous rate of the vertical displacement of the sea surface caused by the motion of the underwater slide. This is included in the governing equations of the tsunami, which are solved by means of a finite-element (FE) technique. The tsunami is computed on two different grids formed by triangular elements, one covering the near-field around Stromboli and the other also including the island of Panarea.The simulations show that the main tsunamigenic potential of the slides is restricted to the first tens of seconds of their motion when they interact with the shallow-water coastal area, and that it diminishes drastically in deep water. The simulations explain how the tsunamis that are generated in the Sciara del Fuoco area, are able to attack the entire coastline of Stromboli with larger effects on the northern coast than on the southern. Strong refraction and bending of the tsunami fronts is due to the large near-shore bathymetric gradient, which is also responsible for the trapping of the waves and for the persistence of the oscillations. Further, the first tsunami produces large waves and runup heights comparable with the observations. The simulated second tsunami is only slightly smaller, though it was induced by a mass that is approximately one third of the first. The arrival of the first tsunami is negative, in accordance with most eyewitness reports. Conversely, the leading wave of the second tsunami is positive.  相似文献   

2.
On December 30, 2002, following an intense period of activity of Stromboli volcano (south Tyrrhenian Sea, Italy), complex mass failures occurred on the northwest slope of the mountain which also involved the underwater portion of the volcanic edifice for a total volume of about 2–3×107 m3. Two main landslides occurred within a time separation of 7 min, and both set tsunami waves in motion that hit the coasts of Stromboli causing injuries to three people and severe damage to buildings and structures. The tsunamis also caused damage on the island of Panarea, some 20 km to the SSE from the source. They were observed all over the Aeolian archipelago, at the island of Ustica to the west, along the northern Sicily coasts to the south as well as along the Tyrrhenian coasts of Calabria to the east and in Campania to the north. This paper presents field observations that were made in the days and weeks immediately following the events. The results of the quantitative investigations undertaken in the most affected places, namely along the coasts of Stromboli and on the island of Panarea, are reported in order to highlight the dynamics of the attacking waves and their impact on the physical environment, on the coastal structures and on the coastal residential zone. In Stromboli, the tsunami waves were most violent along the northern and northeastern coastal belt between Punta Frontone and the village of Scari, with maximum runup heights of about 11 m measured on the beach of Spiaggia Longa. Measured runups were observed to decay rapidly with distance from the source, typical of tsunami waves generated by limited-area sources such as landslides.  相似文献   

3.
Gulf of Mexico (GOM) coasts have been included in the U.S. Tsunami Warning System since 2005. While the tsunami risk for the GOM is low, tsunamis generated by local submarine landslides pose the greatest potential threat, as evidenced by several large ancient submarine mass failures identified in the northern GOM basin. Given the lack of significant historical tsunami evidence in the GOM, the potential threat of landslide tsunamis in this region is assessed from a worst-case scenario perspective based on a set of events including the large ancient failures and most likely extreme events determined by a probabilistic approach. Since tsunamis are not well-understood along the Gulf Coast, we investigate tsunami inundation referenced to category-specific hurricane storm surge levels, which are relatively well established along the Gulf Coast, in order to provide information for assessing the potential threat of tsunamis which is more understandable and accessible to emergency managers. Based on tsunami inundation studies prepared for the communities of South Padre Island, TX, Galveston, TX, Mobile, AL, Panama City, FL, and Tampa, FL, we identify regional trends of tsunami inundation in terms of modeled storm surge inundation. The general trends indicate that tsunami inundation can well exceed the level of storm surge from major hurricanes in open beachfront and barrier island regions, while more interior areas are less threatened. Such information can be used to better prepare for tsunami events as well as provide a preliminary estimate of tsunami hazard in locations where detailed tsunami inundation studies have not been completed.  相似文献   

4.
The role of sector collapse in the generation of catastrophic volcanigenic tsunami has become well understood only recently, in part because of the problems in the preservation and recognition of tsunami deposits. Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128] modeled a tsunami produced by the c. 5,000 years BP collapse of the Sciara del Fuoco on the island volcano Stromboli. Although deposits associated with this event are generally lacking on the island, volcaniclastic breccias on the SE side of the island extending to an elevation above 120 m a.s.l. may have been generated by this tsunami. Deposits above 100 m are dominated by coarse breccias comprising disorganized, poorly sorted, nonbedded, angular to subangular lava blocks in a matrix of finer pyroclastic debris. These breccias are interpreted as a water-induced mass flow, possibly a noncohesive debris flow, generated as colluvial material on steep slopes was remobilized by the return flow of the tsunami wave, the run-up of which reached an elevation exceeding 120 m a.s.l. Finer breccias of subrounded to rounded lava blocks cropping out at 15 m a.s.l. are similar to modern high-energy beach deposits and are interpreted as beach material redeposited by the advancing tsunami wave. The location of these deposits matches the predicted location of the maximum tsunami wave amplitude as calculated by modeling studies of Tinti et al. [Tinti, S., Bortolucci, E., Romagnoli, C., 2000. Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. J. Volcanol. Geotherm. Res. 96, 103–128]. Whereas the identification and modeling of paleo-tsunami events is typically based on the observation of the sedimentary deposits of the tsunami run-up, return flow may be equally or more important in controlling patterns of sedimentation.  相似文献   

5.
In the last 15 years there have been 16 tsunami events recorded at tide stations on the Pacific Coast of Canada. Eleven of these events were from distant sources covering almost all regions of the Pacific, as well as the December 26, 2004 Sumatra tsunami in the Indian Ocean. Three tsunamis were generated by local or regional earthquakes and two were meteorological tsunamis. The earliest four events, which occurred in the period 1994–1996, were recorded on analogue recorders; these tsunami records were recently re-examined, digitized and thoroughly analysed. The other 12 tsunami events were recorded using digital high-quality instruments, with 1-min sampling interval, installed on the coast of British Columbia (B.C.) in 1998. All 16 tsunami events were recorded at Tofino on the outer B.C. coast, and some of the tsunamis were recorded at eight or more stations. The tide station at Tofino has been in operation for 100 years and these recent observations add to the dataset of tsunami events compiled previously by S.O. Wigen (1983) for the period 1906–1980. For each of the tsunami records statistical analysis was carried out to determine essential tsunami characteristics for all events (arrival times, maximum amplitudes, frequencies and wave-train structure). The analysis of the records indicated that significant background noise at Langara, a key northern B.C. Tsunami Warning station located near the northern end of the Queen Charlotte Islands, creates serious problems in detecting tsunami waves. That station has now been moved to a new location with better tsunami response. The number of tsunami events observed in the past 15 years also justified re-establishing a tide gauge at Port Alberni, where large tsunami wave amplitudes were measured in March 1964. The two meteorological events are the first ever recorded on the B.C. coast. Also, there have been landslide generated tsunami events which, although not recorded on any coastal tide gauges, demonstrate, along with the recent investigation of a historical catastrophic event, the significant risk that landslide generated tsunami pose to coastal and inland regions of B.C.  相似文献   

6.
--A modified and corrected version of the viscous slide model of Jiang and LeBlond (1994) is used to assess the tsunami risk associated with hypothetical underwater slope failures in two coastal areas of British Columbia having potentially unstable sediment deposits: (a) Malaspina Strait, separating the mainland coast and Texada Island in the central Strait of Georgia; and (b) Roberts Bank on the foreslope of the Fraser River Delta in the southern Strait of Georgia. The intent of this study is to demonstrate the capability of the model for tsunami risk assessment and to improve upon previous studies of tsunami risk in the region based on reasonable submarine landslide scenarios. The potential risk from tsunamis associated with slide failures has been examined, but the likelihood of failure events themselves was not considered. For the Malaspina Strait scenarios, simulated tsunamis are generated by failure of a lobe of perched sediment situ ated on the slope of eastern Texada Island. Failure as a flow slide of the estimated 1,250,000 m3 of sediment generates wave troughs reaching ц.9 m and trough-to-crest heights of 6 to 8 m along the coast of Texada Island. At Cape Cockburn, on the opposite side of the strait, wave heights of 1.5 to 2.0 m are produced. For Roberts Bank, simulated waves are examined for two separate failure scenarios. The larger slide (Case 1) involves the failure of a sediment lobe with lateral dimensions of 7 2 3 km2 and volume of 0.75 km3 while the smaller slide (Case 2) fails a sediment lobe with dimensions of 4 2 2.6 km2 and volume of 0.23 km3. Computations were made both for high (+3 m) and low (х m) tide conditions. For both failure volumes, maximum wave amplitudes (up to 18 m for Case 1 and 8 m for Case 2) occur on the coasts of Mayne and Galiano Islands, opposite the source area. Wave amplitudes are much smaller (1 to 4 m) on the mainl and coast because of the reflection of the initial waves from Roberts Bank. Additional numerical experiments were conducted for both regions to estimate the sensitivity of the computed tsunami wave heights to input parameters, such as slide viscosity, bulk density, and slide position.  相似文献   

7.
A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases. Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo. The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from the main feeding system of the volcano.  相似文献   

8.
We present 14 scenarios of potential tsunamis in the South China Sea and its adjoining basins, the Sulu and Sulawezi Seas. The sources consist of earthquake dislocations inspired by the the study of historical events, either recorded (since 1900) or described in historical documents going back to 1604. We consider worst-case scenarios, where the size of the earthquake is not limited by the largest known event, but merely by the dimension of the basin over which a coherent fault may propagate. While such scenarios are arguably improbable, they may not be impossible, and as such must be examined. For each scenario, we present a simulation of the tsunami??s propagation in the marine basin, exclusive of its interaction with the coastline. Our results show that the South China, Sulu and Sulawezi Seas make up three largely independent basins where tsunamis generated in one basin do not leak into another. Similarly, the Sunda arc provides an efficient barrier to tsunamis originating in the Indian Ocean. Furthermore, the shallow continental shelves in the Java Sea, the Gulf of Thailand and the western part of the South China Sea significantly dampen the amplitude of the waves. The eastern shores of the Malay Peninsula are threatened only by the greatest??and most improbable??of our sources, a mega-earthquake rupturing all of the Luzon Trench. We also consider two models of underwater landslides (which can be triggered by smaller events, even in an intraplate setting). These sources, for which there is both historical and geological evidence, could pose a significant threat to all shorelines in the region, including the Malay Peninsula.  相似文献   

9.
Japan’s 2011 Tohoku-Oki earthquake and the accompanying tsunami have reminded us of the potential tsunami hazards from the Manila and Ryukyu trenches to the South China and East China Seas. Statistics of historical seismic records from nearly the last 4 decades have shown that major earthquakes do not necessarily agree with the local Gutenberg-Richter relationship. The probability of a mega-earthquake may be higher than we have previously estimated. Furthermore, we noted that the percentages of tsunami-associated earthquakes are much higher in major events, and the earthquakes with magnitudes equal to or greater than 8.8 have all triggered tsunamis in the past approximately 100 years. We will emphasize the importance of a thorough study of possible tsunami scenarios for hazard mitigation. We focus on several hypothetical earthquake-induced tsunamis caused by M w 8.8 events along the Manila and Ryukyu trenches. We carried out numerical simulations based on shallow-water equations (SWE) to predict the tsunami dynamics in the South China and East China Seas. By analyzing the computed results we found that the height of the potential surge in China’s coastal area caused by earthquake-induced tsunamis may reach a couple of meters high. Our preliminary results show that tsunamis generated in the Manila and Ryukyu trenches could pose a significant threat to Chinese coastal cities such as Shanghai, Hong Kong and Macao. However, we did not find the highest tsunami wave at Taiwan, partially because it lies right on the extension of an assumed fault line. Furthermore, we put forward a multi-scale model with higher resolution, which enabled us to investigate the edge waves diffracted around Taiwan Island with a closer view.  相似文献   

10.
— Simulation of tsunami propagation and runup of the 1998 Papua New Guinea (PNG) earthquake tsunami using the detailed bathymetry measured by JAMSTEC and adding bathymetric data at depths less than 60 m is carried out, reproducing the tsunami energy focus into Warapu and Arop along the Sissano Lagoon. However, the computed runup heights in the lagoon are still lower than those measured. Even if the error in estimating the fault parameters is taken into consideration, computational results are similar. Analysis by the wave ray method using several scenarios of the source size of the tsunami and location by the wave ray method suggests that a source characterized by small size in water 1,000-m deep approximately 25 km offshore the lagoon, best fits the arrival determined from the interviews with eyewitnesses. A two-layer numerical model simulating the interaction of the tsunami with a landslide is employed to study the behavior of a landslide-generated tsunami with different size sand depths of the initial slide just outside the lagoon. A landslide model with a volume of 4–8 × 109 m3 is selected as the best in order to reproduce the distribution of the measured tsunami runup in the lagoon. The simulation of a tsunami generated in two stages, fault and landslide, could show good agreement with the runup heights and distribution of the arrival time, but a time gap of around 10 minutes remains, suggesting that a tsunami generated by the mainshock at 6:49 PM local time is too small for people to notice, and the following tsunami triggered by landslide or mass movement near the lagoon about ten minutes after the mainshock attacked the coast and caused the huge damage.  相似文献   

11.
The tsunami generated by the 1 November, 1755 earthquake off the coast of Portugal affected mainly the coastlines of the Iberian Peninsula and Northwest Morocco, but was also observed in some places along the North Atlantic coasts. To determine whether the event could have effected the French coastline, we conducted a study to search for signs of the tsunami in historical records from all tide gauge stations off the French Atlantic coast during the twentieth century, specifically for the 28 February, 1969 and the 26 May, 1975 tsunamis that were recorded by the Portuguese tide gauge network. Because many recordings are available in La Rochelle (located on the southwest coast of France), we focused our study on this harbor. The analysis of the tide gauge data shows no evidence for tsunamis in La Rochelle, neither in 1969 nor in 1975. To confirm this lack of tsunami signals, we used nonlinear, shallow water equations to compute the tsunami propagation to the French Atlantic coastline for both 1969 and 1975 events. Results obtained from these simulations confirm otherwise unnoticeable wave amplitudes at La Rochelle harbor. In a second step, tsunamis from three different scenarios for the 1755 earthquake were modeled to estimate the impact of such a tsunami on the French Atlantic coast, with a focus on La Rochelle harbor. A comparison of the functions of tide configuration was made in order to analyse the difference in impact. The results show that, while the harbor is poorly impacted, several areas (western part of the island of Ré and northern coast of the island of Oléron) may have experienced a moderate impact from 0.5 to 1 m, especially since the tide was high at the time of arrival, possibly causing local inundations in lowland areas.  相似文献   

12.
The Pacific is well known for producing tsunamis, and events such as the 2011 Tōhoku-oki, Japan disaster demonstrate the vulnerability of coastal communities. We review what is known about the current state of tsunami risk management for Pacific Island countries and territories (PICTs), identify the issues and challenges associated with affecting meaningful tsunami disaster risk reduction (DRR) efforts and outline strategies and possible ways forward. Small island states are scattered across the vast Pacific region and these states have to varying degrees been affected by not only large tsunamis originating in circum-Pacific subduction zones, but also more regionally devastating events. Having outlined and described what is meant by the risk management process, the various problems associated with our current understanding of this process are examined. The poorly understood hazard related to local, regional and distant sources is investigated and the dominant focus on seismic events at the expense of other tsunami source types is noted. We reflect on the challenges of undertaking numerical modelling from generation to inundation and specifically detail the problems as they relate to PICTs. This is followed by an exploration of the challenges associated with mapping exposure and estimating vulnerability in low-lying coastal areas. The latter part of the paper is devoted to exploring what mitigation of the tsunami risk can look like and draw upon good practice cases as exemplars of the actions that can be taken from the local to regional level. Importantly, given the diversity of PICTs, no one approach will suit all places. The paper closes by making a series of recommendations to assist PICTs and the wider tsunami research community in thinking through improvements to their tsunami risk management processes and the research that can underpin these efforts.  相似文献   

13.
The present study focuses on evaluation of the maximum and minimum water levels caused by tsunamis as risk factors for operation and management at nuclear power facilities along the coastal area of Japan. Tsunamis generated by submarine earthquakes are examined, basing literature reviews and databases of information on historical tsunami events and run-up heights. For simulation of water level along the coast, a numerical calculation system should be designed with computational regions covering a particular site. Also the calculation system should be verified by comparison of historical and calculated tsunami heights. At the beginning of the tsunami assessment, the standard faults, their locations, mechanisms and maximum magnitudes should be carefully estimated by considering historical earthquake-induced tsunamis and seismo-tectonics at each area. Secondly, the range of errors in the model parameters should be considered since earthquakes and tsunamis are natural phenomena that involve natural variability as well as errors in estimating parameters. For these reasons, uncertainty-induced errors should be taken into account in the process of tsunami assessment with parametric study of the tsunami source model. The element tsunamis calculated by the standard fault models with the errors would be given for the design. Then, the design tsunami can be selected among the element tsunamis with the most significant impact, maximum and minimum water levels, on the site, bearing in mind the possible errors in the numerical calculation system. Finally, the design tsunami is verified by comparison with the run-up heights of historical tsunamis, ensuring that the design tsunami is selected as the highest of all historical and possible future tsunamis at the site.  相似文献   

14.
In the last 9 years, the amount and the quality of geophysical and volcanological observations of Stromboli's' activity have undergone a marked increase. This new information highlighted that the landslides on the Sciara del Fuoco flank are tightly linked to the volcanic activity. Actually, at the beginning of the December 28, 2002, effusive eruption, the seismic monitoring network was less dense than now, and therefore it is not known if there was an increase in the landslide rate before the eruption. Despite this, it is known that a big landslide occurred 2 days after the beginning of the eruption which caused a tsunami (December 30, 2002). More recently, the effusive eruption in February 2007 was preceded by an increase in landslides on the Sciara del Fuoco flank, which were recorded by the seismological monitoring system that had been improved after the 2002–2003 crisis. These episodes led us to believe that monitoring the Sciara del Fuoco flank instability is an important topic, and that landslides might be significant short-term precursors of effusive eruptions at the Stromboli volcano. To automatically detect landslide signals, we have developed a specialized neural algorithm. This can distinguish between landslides and the other types of seismic signals usually recorded at the Stromboli volcano (i.e., explosion quakes and volcanic tremor). The discrimination results show an average performance of 98.67 %. According to the experience of the crisis of 2007, to identify changes that can be considered as precursors of effusive eruptions, we set up an automatic decision-making method based on the neural network responses. This method can operate on a continuous data stream. It calculates a landslide percentage index (LPI) that depends on the number of records that are classified by the net as landslides over a given time interval. We tested the method on February 27, 2007, including the beginning of the effusive phase. The index showed an increase as early as at 09:00 UTC on that day and reached its maximum value (100 %) at 12:00, about 40 min before the onset of the eruption. After the beginning of the effusive phase, the index remains high due to the blocks that roll down along the slope from the front of the lava flow. On the basis of these tests, we propose a decision-making method that is able to recognize a trend in the LPI similar to that of 2007 eruption, allowing the identification of precursors of effusive phases at the Stromboli volcano.  相似文献   

15.
— Tsunamis are generated by displacement or motion of large volumes of water. While there are several documented cases of tsunami generation by volcanic eruptions and landslides, most observed tsunamis are attributed to earthquakes. Kinematic models of tsunami generation by earthquakes — where specified fault size and slip determine seafloor and sea-surface vertical motion — quantitatively explain far-field tsunami wave records. On the other hand, submarine landslides in subduction zones and other tectonic settings can generate large tsunamis that are hazardous along near-source coasts. Furthermore, the ongoing exploration of the oceans has found evidence for large paleo-landslides in many places, not just subduction zones. Thus, we want to know the relative contribution of faulting and landslides to tsunami generation. For earthquakes, only a small fraction of the minimum earthquake energy (less than 1% for typical parameter choices for shallow underthrusting earthquakes) can be converted into tsunami wave energy; yet, this is enough energy to generate terrible tsunamis. For submarine landslides, tsunami wave generation and landslide motion interact in a dynamic coupling. The dynamic problem of a 2-D translational slider block on a constant-angle slope can be solved using a Green's function approach for the wave transients. The key result is that the largest waves are generated when the ratio of initial water depth above the block to downslope vertical drop of the block H 0 /W sin δ is less than 1. The conversion factor of gravitational energy into tsunami wave energy varies from 0% for a slow-velocity slide in deep water, to about 50% for a fast-velocity slide in shallow water and a motion abruptly truncated. To compare maximum tsunami wave amplitudes in the source region, great earthquakes produce amplitudes of a few meters at a wavelength fixed by the fault width of 100 km or so. For submarine landslides, tsunami wave heights — as measured by b, block height — are small for most of the parameter regime. However, for low initial dynamic friction and values of H 0 /W sin δ less than 1, tsunami wave heights in the downslope and upslope directions reach b and b/4, respectively.Wavelengths of these large waves scale with block width. For significant submarine slides, the value of b can range from meters up to the kilometer scale. Thus, the extreme case of efficient tsunami generation by landslides produces dramatic hazards scenarios.  相似文献   

16.
Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.  相似文献   

17.
Ray tracing of seismic surface waves is applied to tsunami propagation to examine bathymetric effect along its propagation path. Computations are made for trans-Pacific tsunamis and for near-field tsunamis in the Japan Sea. For tsunamis across the Pacific Ocean, the comparison to a uniform ocean shows that focusing and defocusing, due to bathymetry, are significant for some combinations of source and receiver. For example, the refraction of rays is predominant at the East Pacific Rise for the tsunami from Chile. The tsunamis in the Japan Sea are strongly affected by the shallow Yamato Rise. The predicted arrival time and amplitude distribution generally agree with the observations from an actual tsunami. Since the computation can be made very quickly, the method is useful for preliminary analysis of tsunami propagation, such as in an operational warning system or in the determination of computational area for finite-difference computation.  相似文献   

18.
Eighteen papers on past and recent destructive tsunamis are included in Volume II of the PAGEOPH topical issue “Historical and Recent Catastrophic Tsunamis in the World.” Three papers discuss deep-sea (DART) and coastal tsunami observations, warning systems and risk management in the Pacific Ocean. Four papers examine the 1755 Lisbon, 1964 Alaska, 2003 Algeria, and 2011 Haiti tsunamis. Four more papers, as well as some papers in Volume I, report on various aspects of the 2010 Chile tsunami. Two papers present some results of field survey and modelling investigation of the 2010 Mentawai, Indonesia, tsunami. Three papers report on modelling efforts of tsunami generation by earthquake and landslide, and of tsunami propagation. Finally, two papers discuss hazard assessment using a probabilistic approach.  相似文献   

19.
We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the M W 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation.  相似文献   

20.
We apply a recently developed and validated numerical model of tsunami propagation and runup to study the inundation of Resurrection Bay and the town of Seward by the 1964 Alaska tsunami. Seward was hit by both tectonic and landslide-generated tsunami waves during the $M_{\rm W}$ 9.2 1964 megathrust earthquake. The earthquake triggered a series of submarine mass failures around the fjord, which resulted in landsliding of part of the coastline into the water, along with the loss of the port facilities. These submarine mass failures generated local waves in the bay within 5?min of the beginning of strong ground motion. Recent studies estimate the total volume of underwater slide material that moved in Resurrection Bay to be about 211?million m3 (Haeussler et?al. in Submarine mass movements and their consequences, pp 269?C278, 2007). The first tectonic tsunami wave arrived in Resurrection Bay about 30?min after the main shock and was about the same height as the local landslide-generated waves. Our previous numerical study, which focused only on the local landslide-generated waves in Resurrection Bay, demonstrated that they were produced by a number of different slope failures, and estimated relative contributions of different submarine slide complexes into tsunami amplitudes (Suleimani et?al. in Pure Appl Geophys 166:131?C152, 2009). This work extends the previous study by calculating tsunami inundation in Resurrection Bay caused by the combined impact of landslide-generated waves and the tectonic tsunami, and comparing the composite inundation area with observations. To simulate landslide tsunami runup in Seward, we use a viscous slide model of Jiang and LeBlond (J Phys Oceanogr 24(3):559?C572, 1994) coupled with nonlinear shallow water equations. The input data set includes a high resolution multibeam bathymetry and LIDAR topography grid of Resurrection Bay, and an initial thickness of slide material based on pre- and post-earthquake bathymetry difference maps. For simulation of tectonic tsunami runup, we derive the 1964 coseismic deformations from detailed slip distribution in the rupture area, and use them as an initial condition for propagation of the tectonic tsunami. The numerical model employs nonlinear shallow water equations formulated for depth-averaged water fluxes, and calculates a temporal position of the shoreline using a free-surface moving boundary algorithm. We find that the calculated tsunami runup in Seward caused first by local submarine landslide-generated waves, and later by a tectonic tsunami, is in good agreement with observations of the inundation zone. The analysis of inundation caused by two different tsunami sources improves our understanding of their relative contributions, and supports tsunami risk mitigation in south-central Alaska. The record of the 1964 earthquake, tsunami, and submarine landslides, combined with the high-resolution topography and bathymetry of Resurrection Bay make it an ideal location for studying tectonic tsunamis in coastal regions susceptible to underwater landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号