首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich ??striped?? colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.  相似文献   

2.
The Ianapera emerald deposit is located in the Neoproterozoic Vohibory Block of southern Madagascar. The local geology consists of intercalated migmatitic gneissic units and calcareous metasedimentary rocks, containing boudinaged metamorphosed mafic/ultramafic lenses, all intruded by pegmatite veins. These units occur near the hinge of the tightly folded Ianapera antiform, within a few kilometers of the Ampanihy shear zone. Emerald mineralization is hosted by metasomatic phlogopite veins, and bodies developed within the mafic/ultramafic rocks. Based on field and textural relationships, we distinguish proximal and distal styles of mineralization. Proximal mineralization occurs at the contact of pegmatite veins with mafic/ultramafic units; in the distal style, pegmatites are not observed. Three types of emeralds could be distinguished, mainly on the basis of color and mineral zoning. Some of these emeralds have the most Al-depleted and Cr-rich composition ever recorded. Another characteristic feature to the Ianapera deposit and, to our knowledge, yet unreported, is the association of some emeralds with scapolite in metasomatised mafic rocks. Mineral inclusions are common in most emeralds and include phlogopite, carbonates, barite, K-feldspar, quartz, pyrite, zircon, monazite, bastnaesite, phenakite, plus Fe and Cr oxides. However, feldspar and rare earth element-bearing minerals occur predominantly in proximal emeralds, which also have a more incompatible trace-element signature than distal emeralds. We propose a model related to syn- to post-tectonic magmatic-hydrothermal activity. Pegmatitic bodies intruded units of the Ianapera antiform probably during tectonic relaxation. Exsolution of fluids rich in halogens and incompatible elements from the cooling pegmatites caused hydrothermal metasomatism of Cr-bearing mafic/ultramafic rocks in direct contact with the pegmatites. Local fracturing favored fluid infiltration, permitting the formation of distal mineralization. Emerald composition was controlled by the chemistry of the host rock. The presence of carbonate mineral inclusions in the emeralds and the high F-activity indicated by elevated F-contents in newly formed minerals suggest transport of Be as a fluoride-carbonate complex. It seems likely that beryl formation was triggered by precipitation of F-rich phlogopite, which removed the complexing ligand from the fluid.  相似文献   

3.
The fluid composition, δD of channel H2O, and δ18O of lattice oxygen have been determined in beryl and emerald from a variety of geological environments and used to constrain the origin of the parental fluids from which beryl has grown. Step-heating analyses performed by quadrupolar mass spectrometry were used to quantify the composition of the fluid phases in beryl from granitic pegmatites and greisens and emerald from Brazil, Colombia, and Afghanistan. An important conclusion is that beryl and emerald have a similar fluid composition, with concentrations of H2O being greater than 90% of the total water in the mineral irrespective of the age of formation (2.0 Ga to 32 Ma) and tectonic settings. However, the Brazilian Santa Terezinha shear-zone emerald deposit contains abundant CO2, up to 13 wt% of the total fluid. A second conclusion is that the channel H2O content for some Brazilian emeralds is higher than the range defined for beryl in the literature, especially for those related to the shear-zone type (2.99 lt; H2O < 3.16 wt%) and the pegmatite type from the Pombos, Pela Ema, and Pirenopolis deposits (2.78 < H2O < 3.01 wt%). Colombian emeralds have very low H2O contents (1.30 < H2O < 1.96 wt%), among the lowest in the world.

Brazilian, Colombian, and Afghanistani emeralds have contrasting and restricted ranges of δ18O values. In Brazil, emeralds related to pegmatites have a systematic δ18O inter-deposit variability (+6.3 < δ18O < +12.4‰). The calculated δ18O of the fluid was buffered by the host ultrabasic rocks during fluid-rock interaction. Emerald and cogenetic phlogopite related to shear-zone-type deposits have a quite restricted δ18O range (+12.0 < δ18O 7lt; +12.4‰); the calculated is interpreted to represent the original isotopic composition of the hydrothermal fluid. Relative to Brazil, the δ18O of Colombian and Afghanistani emeralds shows strong enrichment in 18O (+13.4 < δ18O < +23.6‰), and the high calculated δ18O of the fluid suggests extensive reaction with 18O-rich sedimentary or metasedimentary rocks.

In Brazil, the δD composition of channels in emerald and the calculated δ18OH2O for phlogopite are compatible with both magmatic and metamorphic origins. A magmatic origin is supported for emeralds associated with the pegmatitic Socotó and Carnaiba deposits (mean δD = ?37.8 ± 8‰) and a metamorphic origin is suggested for the Santa Terezinha shear-zone type (mean δD = ?32.4 ± 3‰). A metamorphic origin is proposed for Colombian emeralds. Afghanistani emeralds have a δD composition of channels (mean δD = ?46.3 ± 1.3‰) that is compatible with both magmatic and metamorphic origins.  相似文献   

4.
A variety of gemstones is being mined in the Shigar valley, Skardu, Pakistan. These include beryl (goshenite and aquamarine), tourmaline (schorl), garnet (almandine–spessartine), apatite, topaz, fluorite, zoisite, clinozoisite, and axinite, mostly occurring in complex or zoned pegmatites and metamorphic rocks. These have been analyzed using electron probe micro-analyzer and X-ray diffractometer. The mineral chemistry of each gemstone is similar to its respective typical gemstone variety with homogenous chemical composition. Field and chemical characteristics suggest that beryl, tourmaline, garnet, apatite, topaz, and fluorite are occurring in zoned pegmatites which are largely formed by magmatic hydrothermal fluids in the cavities and vugs within the intermediate zone. However, zoisite, clinozoisite, and axinite may have a metamorphic and/or metasomatic origin.  相似文献   

5.
云南祖母绿的矿床地质及宝石学特征   总被引:4,自引:0,他引:4  
张良钜  兰延 《矿物学报》1999,19(2):189-197
云南祖母绿矿床产于寒武系变质岩中,矿体分别产于片麻岩的伟晶岩及云英岩脉中。属于典型的伟晶岩型或气成高温热液矿床。祖母绿的铬、钒来源于变质岩,而铍来源于伟晶岩。  相似文献   

6.
天然祖母绿与合成祖母绿的成分及红外吸收光谱研究   总被引:2,自引:2,他引:0  
申柯娅 《岩矿测试》2011,30(2):233-237
祖母绿是一种高档名贵的宝石,其矿物学名称为绿柱石,化学成分为铍铝硅酸盐。鉴别天然祖母绿和人工合成祖母绿,已成为祖母绿宝石鉴定中的一个重要课题。文章采用常规宝石学研究方法、激光剥蚀-电感耦合等离子体质谱法和红外光谱技术对天然祖母绿(包括哥伦比亚祖母绿和巴西祖母绿)、合成祖母绿(包括助熔剂法合成祖母绿和水热法合成祖母绿)样品进行了系统的分析和研究。结果表明,天然祖母绿与合成祖母绿的主要致色微量元素Cr的含量越高,祖母绿的绿色越浓艳;天然祖母绿与合成祖母绿的红外吸收光谱特征具有明显的差异;根据祖母绿中是否含水、水的赋存状态以及氯的吸收峰,可作为准确鉴别天然祖母绿和合成祖母绿的重要依据。等离子体质谱法化学成分分析不能确定祖母绿是天然形成还是人工合成,需在常规宝石学检测的基础上,综合研究祖母绿的红外吸收光谱特征及内含物特征,才能准确地鉴别天然祖母绿、水热法合成祖母绿和助熔剂法合成祖母绿。  相似文献   

7.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

8.
采用偏光显微镜薄片观察、电子探针及背散射图像、阴极发光等方法,分别对伟晶岩矿脉和顺层剪切带矿脉两种产出状态的云南麻栗坡祖母绿进行了系统的包裹体特征研究。结果表明,云南麻栗坡祖母绿具有产地特征的包裹体有黑色镁电气石、含钒的白云母、具有环带的钾长石、毒砂、镁质黑云母、白钨矿包裹体。伟晶岩脉和顺层剪切带中的祖母绿均含有钾长石、钠长石、电气石、萤石、祖母绿(绿柱石)、黑云母、榍石、磷灰石、黄铁矿、绿泥石、绿帘石包裹体。白云母、方解石、石英、锆石、毒砂、闪锌矿、方铅矿、透辉石仅出现在伟晶岩脉中的祖母绿包裹体中;而白钨矿仅出现在顺层剪切带中的祖母绿包裹体中。对云南不同产状祖母绿矿物包裹体的研究不仅对祖母绿的产地鉴定具有宝石学意义,也对揭示云南麻栗坡祖母绿的成因类型具有重要意义。  相似文献   

9.
Emerald deposits and occurrences: A review   总被引:3,自引:0,他引:3  
Emerald, the green gem variety of beryl, is the third most valuable gemstone (after diamond and ruby). Although it is difficult to obtain accurate statistics, Colombia supplies most (an estimated 60%, worth more than $500,000,000 per year) of the world's emeralds. However there is speculation that the emerald mines in Colombia are becoming depleted. Brazil currently accounts for approximately 10% of world emerald production. Emeralds have also been mined in Afghanistan, Australia, Austria, Bulgaria, China, India, Madagascar, Namibia, Nigeria, Pakistan, South Africa, Spain, Tanzania, the United States, and Zimbabwe.Because it is difficult to obtain accurate analyses of beryllium, most published analyses of beryl are renormalized on the basis of 18 oxygen and 3 Be atoms per formula unit. The color of emerald is due to trace amounts of chromium and/or vanadium replacing aluminum at the Y site; in most cases the Cr content is much greater than that of V. To achieve charge balance, the substitution of divalent cations at the Y site is coupled with the substitution of a monovalent cation for a vacancy at a channel site.Beryl is relatively rare because there is very little Be in the upper continental crust. Unusual geologic and geochemical conditions are required for Be and Cr and/or V to meet. In the classic model, Be-bearing pegmatites interact with Cr-bearing ultramafic or mafic rocks. However in the Colombian deposits there is no evidence of magmatic activity and it has been demonstrated that circulation processes within the host black shales were sufficient to form emerald. In addition, researchers are recognizing that regional metamorphism and tectonometamorphic processes such as shear zone formation may play a significant role in certain emerald deposits.A number of genetic classification schemes have been proposed for emerald deposits. Most are ambiguous when it comes to understanding the mechanisms and conditions that lead to the formation of an emerald deposit. Studies of individual emerald deposits show that in most cases a combination of mechanisms (magmatic, hydrothermal, and metamorphic) were needed to bring Be into contact with the chromophores. This suggests the need for a more flexible classification scheme based on mode of formation. Stable isotopes can be used to estimate the contribution of each mechanism in the formation of a particular deposit. Such estimates could perhaps be more precisely defined using trace element data, which should reflect the mode of formation.Emerald may be identified in the field by color, hardness, and form. It will tend to show up in stream sediment samples but because its specific gravity is relatively low, it will not concentrate in the heavy mineral fraction. In Colombia, structural geology, the sodium content of stream sediment samples, and the lithium, sodium, and lead contents of soil samples have all been used to find emerald occurrences. Exploration for gem beryl could result in the discovery of new occurrences of non-gem beryl or other Be minerals that could become new sources of Be and Be oxide.Future efforts should go towards creating a comprehensive data base of emerald compositions (including trace elements), determination of the role of metamorphism in the formation of some emerald deposits, improved classification schemes, and more effective exploration guidelines.  相似文献   

10.
Emerald, the green gem variety of beryl (Be3Al2Si6O18), is the third most valuable gemstone after diamond and ruby. The green colour appearance of the crystal is due to trace of Cr3+ and V3+, which replaces Al3+ ions in the crystal lattice of beryl. The hue of green colour of emerald depends on the quantity of Cr3+ and V3+ present in the crystal. Be is incorporated along with Cr and/or V during the process of crystallization. Since Be is relatively rare in the upper continental crust, therefore specific geological and geochemical parameters are required for Be to be incorporated in the crystal lattice of emerald.The present work was carried out to understand the lithological and structural control of emerald occurrences in and around Gurabanda area within the Singhbhum shear zone (SSZ) of Singhbhum crustal province, eastern India. The biotite and serpentine schist belong to the Paleoproterozoic Dhanjori Group and constitute the major lithology of the area. Pegmatite and biotite schist contains a variety of gem minerals in abundance in the area and the gem quality emerald occur at the contact zone of quartz vein and mica-schist. Lithology and structure are the main controlling factors of gem-mineralization in the study area. The study indicates that regional metamorphism and deformation processes along the shear zone played a significant role in the formation of emerald deposits. It is inferred that Singhbhum shear zone facilitated a favourable condition, where the Be bearing pegmatites interacted with Cr bearing mica schist or ultramafic rocks to produce emerald crystal.  相似文献   

11.
The Ailaoshan aquamarine-bearing pegmatites are associated with Proterozoic metamorphic rocks in the southern portion of the Ailaoshan fault-folded complex.The gem-bearing pegmatite mineralization zones of the region occur in areas generally consistent with the regional tectonic trend.The pegmatites are found in metamorphic rocks,migmatites and in the inner/outer contact zones of gneissoid granites. The Rb-Sr isochron drawn for the pegmatites is 26~31 Ma,(i.e.in Himalayan).The homogenization temperatures of melt and liquid inclusions in minerals vary from 185 to 920℃,which are comparable to the inclusions observed in banded migmatites and ptygmatic quartz veins in the surrounding metamorphic rocks. The mineralization fluids of the pegmatite were rich in HCO_3 and CO_2,and their compositional assemblages are comparable to metamorphic fluids.Results of H,O,C,Si etc.isotopic analyses and REE,and Be analyses indicates that the sources of mineralization components that formed the pegmatites are closely associated with metamorphic fluids and the enclosing metamorphic rocks. A pegmatite structure simulation experiment was conducted at high temperature and pressure(840℃and 1,500×105Pa.),with various metamorphic rock samples in a water-rich and volatile-rich environment.When the liquidus was reached,the temperature was gradually decreased at the rate of 5~10℃/day over a time period of three months.SEM energy-dispersive spectrum analyses were performed on the experimental products.A series of pegmatoid textures were observed including zonal texture,megacryst texture,drusy cavities,crystal druses,and vesicular texture along with more than ten types of minerals including plagioclase,microcline,quartz and biotite.Different metamorphic rock melts generated different mineral assemblages.Experiment results revealed that the partial melting of metamorphic rocks could form melts similar to pegmatite magmas. Based upon the geological characteristics,geochemistry,and pegmatite texture simulation experimental results,it is concluded that the mineralization components of Ailaoshan aquamarine-bearing pegmatites came from metamorphic rocks.The petrogenetic model for the origin of pegmatites is related to ultrametamorphism and metamorphic anatexis.  相似文献   

12.
小宛南山金矿是产于太古宙花岗岩-绿岩地体,受敦煌群D岩组上部层位和韧性剪切带控制的变质热液型金矿床.矿源岩为绿岩带的镁铁质火山岩,成矿流体主要为变质热液,主成矿期属中元古宙.基于金矿床区域地质背景、矿床地质特征、微量元素特征、硫铅同位素组成和包裹体特征,以金赋存层位、容矿岩石、韧性剪切构造、蚀变作用为基础,通过分析成矿地质条件,证明金矿床应属变质热液成因.  相似文献   

13.
Mineralogical, geochemical and fluid inclusion studies reveal two favorable environments for the localisation of beryl mineralisations in the Precambrian rocks of Egypt: (1) emerald-schist; and (2) beryl-specialised granitoid associations. Emerald occurs within the mica schists and is typically confined to the Nugrus major shear zone. However, beryl associated with granitoids occurs in pegmatite veins, greisen bodies, and cassiterite quartz veins cutting the granites and the exocontacts of the volcanosedimentary country rocks.Compositionally, emerald is of octahedral type and its cell edge is lengthened along the a-axis, while beryl associated with granitoids is normal in composition and structural constants. Emerald is thought to be formed as the result of epitactic nucleation of Be, Al and alkali-rich solutions on the mica of the schist country rocks. Fluid inclusion studies show that the solutions are saline (8–22 wt% NaCl equiv.) and the reactions proceeded in the temperature range 260–382°C. On the other hand, aqueous inclusions in beryl associated with granitoids show the following sequence of formation with decreasing temperatures and salinities: beryl pegmatite (320–480°C and 7–16 wt% NaCl equiv.)→greisen bodies (190–400°C and 4–7 wt% NaCl equiv.)→cassiterite-quartz veins (190–380°C and 2–4 wt% NaCk equiv.).This study suggests that factors such as the chemistry of the Be-bearing fluids (rather than that of the bulk host schists) and syn-tectonic intrusions of leucogranites and pegmatites (Bederiving sources) along major ductile shear zones are the important factors controlling emerald formation. However, the endogreisens and exogreisens are the most important targets characterising the metasomatically- and magmatically-specialised, Be-granitoids, respectively. The aqueous inclusions examined in greisen beryls of metasomatised granites show a shorter range of homogenisation temperatures (260–390°C) and salinities(4.8-7 wt% NaCl equiv.) as compared to those of magmatically-specialised granitoids (190–400°C and 4–7 wt% NaCl equiv.). This phenomenon can be partly attributed to the late development of the fracture system during the crystallisation history of the metasomatised granites, where little or no contribution from meteoric waters occurred.  相似文献   

14.
Precambrian emerald deposits of Brazil are found in a typical geologic setting with Archean basement and supracrustal, ultramafic, granitoid and rocks. Volcano-sedimentary series occur as imbricated structures or as bodies affected by complex folding and deformation. Emerald mineralization belongs to the classic biotite-schist deposit, which formed by the reaction of pegmatitic veins within ultrabasic rocks. At the same time, pegmatite-free emerald deposits linked to ductile shear zones are also known. Emerald formation is attributed to infiltrational metasomatic processes provoking a K-metasomatism of the ultrabasic rocks and also a desilication of the pegmatites. A new classification based on the geological setting, structural features, and ore paragenesis is proposed.  相似文献   

15.
《Applied Geochemistry》2000,15(1):13-25
The carboxylate (formate, acetate, propionate and oxalate) and common inorganic anions (F, Cl and SO2−4) compositions for aqueous fluid inclusion leachates from 17 mineral samples collected from various deposits have been determined using ion chromatography in conjunction with microthermometric measurements on the fluid inclusions of their host minerals. The minerals, quartz, fluorite, barite, beryl and a few `ore' minerals (wolframite, pyrite and galena), came from hydrothermal vein-type deposits in felsic igneous rocks or Archean metamorphic rocks. The results indicate that short-chain carboxylates are common components in hydrothermal fluids and can be present in considerable amounts. Formic acid (as formate) is the dominant species over other carboxylic acids. The present study raises new questions about the origin and geochemical significance of carboxylates in hydrothermal ore-forming processes.  相似文献   

16.
The geochemistry of K‐feldspar for K, P, Sr, Ba, Rb, Cs, Ga, and of muscovite for the same elements plus Nb and Ta, was used for proving the parental relationships of S‐type granites and LCT (Li, Cs, Ta) rare‐element pegmatites in the southernmost pegmatitic field of the Pampean pegmatite province in Argentina. The variation of K/Rb‐Cs, K/Cs‐Rb, K/Rb‐Rb/Sr, K/Rb‐Ba in K‐feldspar from the granites and pegmatites show that they form an association with the evolutional sequence: granites → barren‐ to transitional pegmatites → beryl type, beryl‐columbite‐phosphate pegmatites → complex type of spodumene subtype pegmatites → albite‐spodumene type → albite type pegmatites. This sequence reflects the regional distribution of the different magmatic units. The Ta‐Cs diagram for muscovite reveals that none of the studied pegmatites exceed the threshold established in previous studies for being considered with important tantalum oxide mineralization. The granites and pegmatites constitute a rare‐element pegmatitic field in which different magmatic units form a continuous fractionation trend, extended from the less evolved granitic facies to the most geochemically specialized pegmatites  相似文献   

17.
Two distinct series of Variscan granitic rocks have been distinguished in the Gravanho-Gouveia area of Portugal, based on field work, variation diagrams for major and trace elements, rare earth patterns and δ18O versus total FeO diagram of rocks, anorthite content of plagioclase, BaO and P2O5 contents of feldspars and AlVI versus Fe2+ diagram for magmatic muscovite. One series consists of a late-orogenic porphyritic biotite > muscovite granite (G1), less evolved beryl-columbite pegmatites and more evolved beryl-columbite pegmatites showing gradational contacts. The other series consists of post-orogenic porphyritic muscovite > biotite granodiorite to granite (G2), slightly porphyritic muscovite > biotite granite (G3) and lepidolite pegmatites. In each series, pegmatites are derived from the parent granite magma by fractional crystallization of quartz, plagioclase, K-feldspar, biotite and ilmenite. Some metasomatic effects occur like muscovite replacing feldspars, chlorite in pegmatites of the first series and a late muscovite in pegmatites of the second series, probably due to hydrothermal fluids. The lepidolite pegmatites contain cassiterite and two generations of rutile. The first magmatic generation consists of homogeneous crystals and the second generation occurs as heterogeneous zoned crystals derived from hydrothermal fluids. The beryl-columbite pegmatites and lepidolite pegmatites also contain the first magmatic generation and the late hydrothermal generation of zoned columbite-group minerals. More evolved beryl-columbite pegmatites were converted into episyenite by intense hydrothermal alteration and regional circulation of fluids in the granitic rocks.  相似文献   

18.
庐山星子群变质流体的包裹体研究   总被引:2,自引:1,他引:1  
唐红峰  刘丛强  倪培 《矿物学报》2000,20(3):286-292
庐山星子群沉积变质岩中发育平行区域片理的石英脉和长英质脉体,这些脉体的石英晶体内富含原生的流体包裹体,包括低盐度的含液体CO2包裹体、液体包裹体、纯CO2包裹体和高盐度含子矿物包裹体。它们与中生代伟晶岩脉体中包裹体在均一温度、盐度和CO2密度等方面的明显差异和变质脉体中含液体CO2包裹体的等容线位置,表明变质脉体石英中的流体包裹体是在变质作用期间被捕获的部分变质流体,进一步证实了脉体是与变质作用同  相似文献   

19.
Pegmatite deposits commonly occur in the 1500 km long, N-S-trending, tungstentin-bearing granitoid belt in Myanmar. Pegmatites are emplaced as veins and dikes that cut granitoid, migmatite, granitoid gneiss, gneiss, and schist. The pegmatite veins and dikes are mostly 2 to 5 meters wide and 30 to 150 meters long, and some are traceable over a distance of 300 meters.

The pegmatites are composed of quartz, orthoclase, albite, microcline microperthite, and muscovite, with minor biotite, tourmaline, beryl, garnet, topaz, lepidolite, magnetite, wolframite, cassiterite, and rare columbite. They are commonly zoned, feldspars and muscovite being more abundant in the center and quartz more common at the margin. The zoning pattern is rather distinct in the pegmatite body, where tourmaline is present. The light-colored felsic minerals are confined to the core zone and the dark-colored tourmaline crystals to the outer zone.

Numerous fluid inclusions have been found in quartz, topaz, and beryl. Most of the inclusions are rounded to elliptical, with a variable degree of liquid filling. All inclusions are aqueous, two-phase (liquid and vapor) inclusions with no daughter minerals. Homogenization temperatures of 173 fluid inclusions were measured in this study.

Geothermometric studies indicate that the pegmatites were formed over a homogeniza-tion temperature range of 230° to 410°C. Salinities of fluid inclusions in pegmatite minerals yielded from 1.0 to 10.8 NaCl equiv. wt‰. Topaz and quartz single crystals (several cm across) from the Sakangyi pegmatite provide an opportunity to extract the fluids trapped in these minerals. The Na/K ratios of the fluid inclusions in two topaz samples were 3.0 to 4.9, and those of two quartz samples were 2.9 to 10.5, suggesting the presence of substantial potassium in the pegmatite-forming fluids. In this study, evidence for phase separation of the pegmatite-forming fluids was not observed. The post-magmatic, hydrothermal fluids responsible for the pegmatite veins evidently emanated from cooling S-type granitoids, with which they are spatially associated.  相似文献   

20.
The Oban Basement Massif of southeastern Nigeria is composed of metamorphosed rocks including phyllites, schists, gneisses and amphibolites cut by pegmatitic dykes of varying length and thickness, which intruded the metamorphic rocks. Preliminary geochemical study and analysis of these pegmatites from western Oban Massif at Uyanga, Akwa Ibami, Iwuru I, Iwuru Ⅱ and Igbofia showed that the pegmatites are highly albitized. This is incon-sistent with earlier postulations that the pegmatites in this part of Nige...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号