首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral analysis of surface waves (SASW) is a nondestructive in-situ testing method that is used to determine stiffness profiles of soil and pavement sites based on dispersion characteristics of Rayleigh-type surface waves.Inversion of the Rayleigh wave dispersion curve of a site provides information on the variation of shear-wave velocity with depth. In the inversion procedures currently used for SASW tests, the field dispersion curve is matched with a theoretical dispersion curve obtained for the fundamental mode of surface wave propagation.In order to overcome difficulties associated with the presence of multi-modes in SASW signals, a new inversion method based on the maximum vertical flexibility coefficient is introduced in this paper. Unlike root-searching methods, the new method easily identifies the predominant propagation modes. In this new approach, the simplex method is used to match field and theoretical dispersion curves automatically. The purpose of this paper is to present the details of the new method and to demonstrate its advantages.  相似文献   

2.
瑞利波勘探中“之”形频散曲线的形成机理及反演研究   总被引:42,自引:6,他引:36  
对瑞利波勘探中“之”字形频散曲线形成的物理机理进行了理论分析,研究了诸波模的传播特性及相互关系.指出在地表下存在具有水平界面的软弱夹层和地层裂缝时,瑞利波频散曲线中的“之”字形结构是低速夹层或地层裂缝中出现多模现象的结果.利用阻尼最小二乘法和遗传算法对瑞利波频散曲线反演介质参数进行了研究和分析,发现最小二乘法不适合瑞利波“之”字形反演问题研究,而用遗传算法得到了较好的结果.  相似文献   

3.
The spectral analysis of surface wave (SASW) developed in the early eighties has opened the way to the use of surface waves for the definition of shear wave velocity profiles in soil deposits or pavement structures without the need of any borings or intrusion. The SASW testing procedure was designed to minimize the contribution of higher modes and thus assumes that the Rayleigh waves which propagate at the surface belong only to the fundamental mode. Several studies have however demonstrated that, in some conditions, higher Rayleigh modes can contribute significantly to the dispersion curve. Different tests configurations exist today to deal with Rayleigh mode problem by the use of an array of receivers. In spite of that, the SASW configuration remains attractive due to the limited number of receivers, as well as, the Rayleigh modes contributing in SASW records configuration can be identified by multiple-filter technique and isolated using time-variable filters. The proposed techniques are first validated by simulated records and then applied to SASW records obtained in the field. The study confirms that higher modes can participate and even dominate in SASW records. An important contribution of higher Rayleigh modes can also exist, even if the shear wave velocity increases regularly with depth. The higher Rayleigh modes can significantly affect the accuracy of the shear wave velocity profile if they are not properly identified and separated. A multi-mode inversion process is shown to be important to have an accurate soil characterization.  相似文献   

4.
基于瑞利波高阶模式反演的实验研究   总被引:9,自引:5,他引:4       下载免费PDF全文
通过超声实验研究了沿分层介质,特别是含有低速层的分层介质传播的瑞利波频散特征. 分别对有机玻璃/钢构成的两层速度递增的半空间和铝/有机玻璃/钢构成的含有低速层的三层半空间进行了超声探测实验,采用频率波数分析方法分析了多模式的瑞利波频散曲线,对于速度递增的两层半空间,得到了第一和第二个模式的频散曲线; 对于含有低速层的三层介质,实验得到的频散曲线在不同频段对应不同的模式,从而在模式之间产生跳跃, 分析表明模式跳跃是由各个模式在表面位移幅度的不同分布引起的. 文中明确指出了低速层存在时,反演研究不仅要考虑各模式的频散特性,同时还要考虑不同模式在表面的位移分布情况,给出了低速层存在时的反演方法,避免了模式的误判. 利用遗传算法对两种实验模型的介质参数进行了反演,得到了和实际参数吻合的反演结果.  相似文献   

5.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

6.
Rayleigh wave dispersion data usually appear in the form of multimodal spectra for a layered model structure. The number of dispersion modal curves depends on the number of layers in the model. The measured dispersion velocities from the frequency–wavenumber (F–K) space, however, may not represent the true phase velocities of the fundamental-mode dispersion curve, but apparent phase velocities. The present study discusses how multimode curves are generated in the multichannel analysis of surface waves (MASW) method and the cause of the apparent velocity produced by the F–K method. Results from a field trial demonstrate that apparent phase velocities fail to reveal thin layers with low velocities. A better agreement of the inverted model with the geotechnical record is obtained by using the data points extracted from the fundamental-mode curve of the MASW spectral image.  相似文献   

7.
作为近地表横波速度结构成像的主要手段之一,面波多道分析法的正问题研究对现场观测系统设计及后续反演计算具有重要意义.目前面波频散曲线的正演主要分为两类:一是对水平层状介质中面波的本征值问题进行求解,该类方法计算效率高但较难考虑地下介质在横向上的不均匀性;二是基于波动方程的全波场模拟,该类方法在理论上可考虑任意复杂的地质模型但计算成本相对较高.本文基于振幅归一化加权的聚束分析,提出了一种适用于横向非均匀介质模型的多道瑞雷波频散曲线正演方法.首先,基于聚束分析的计算公式推导得到了经振幅归一化加权后输出功率谱中相速度与局部相速度之间的关系,然后通过黄金分割极值搜索算法计算得到了多道瑞雷波数据的理论频散曲线.数值分析结果表明,该算法能够快速地实现横向非均匀介质中多道瑞雷波频散曲线的正演计算,所求取的频散曲线与采用二维弹性波时间域有限差分模拟分析得到的结果误差较小,这在一定程度上说明了该计算方法的可靠性,从而可为面波多道分析法中的观测系统快速优化设计以及横向非均匀介质中频散曲线的反演解释提供理论支撑.  相似文献   

8.
In the wave field induced by active sources, the observed phase velocity of surface waves is influenced by both mode incompatibility (i.e. non-planar spread of surface waves is idealized as plane waves) and body waves. Effects of sources are usually investigated based on numerical simulations and physical models. Several methods have been proposed to mitigate the effects. In application, however, these methods may also have difficulties since the energy of the body waves depends on soil stratification and parameters. There are multiple modes of surface waves in layered media, among which the higher modes dominate the wave field for soils with the irregular shear velocity profiles. Considering the mode incompatibility and the higher modes, we derive analytical expressions for the effective phase velocity of the surface waves based on the thin layer stiffness method, and investigate the effects of the body waves on the observed phase velocity through the phase analysis of the vibrations of both the surface waves and the body waves. The results indicate that the effective phase velocity of the surface waves in layered media varies with the frequency and the spread distance, and is underestimated compared to that of the plane surface waves in the spread range less than about one wavelength. The oscillations that appeared in the observed phase velocity are due to the involvement of the body waves. The mode incompatibility can be ignored in the range beyond one wavelength, while the influence range of the body waves is far beyond one wavelength. The body waves have a significant influence on the observed phase velocity of the surface waves in soils with a soft layer trapped between the first and the second layers because of strong reflections.  相似文献   

9.
Rayleigh wave dispersion can be induced in an anisotropic medium or a layered isotropic medium. For a layered azimuthally anisotropic structure, traditional wave equation of layered structure can be modified to describe the dispersion behavior of Rayleigh waves. Numerical stimulation results show that for layered azimuthal anisotropy both the dispersion velocities and anisotropic parameters depend principally on anisotropic S-wave velocities. The splitting S-wave velocities may produce dispersion splitting of Rayleigh waves. Such dispersion splitting appears noticeable at azimuthal angle 45°. This feature was confirmed by the measured results of a field test. The fundamental mode splits into two branches at azimuthal angle 45° to the symmetry axis for some frequencies, and along the same direction the difference of splitting-phase velocities of the fundamental model reaches the maximum. Dispersion splitting of Rayleigh waves was firstly displayed for anisotropy study in dispersion image by means of multichannel analysis of surface waves, the image of which provides a new window for studying the anisotropic property of media.  相似文献   

10.
Data provided by accelerometric networks are important for seismic hazard assessment. The correct use of accelerometric signals is conditioned by the station site metadata quality (i.e., soil class, VS30, velocity profiles, and other relevant information that can help to quantify site effects). In France, the permanent accelerometric network consists of about 150 stations. Thirty-three of these stations in the southern half of France have been characterized, using surface-wave-based methods that allow derivation of velocity profiles from dispersion curves of surface waves. The computation of dispersion curves and their subsequent inversion in terms of shear-wave velocity profiles has allowed estimation of VS30 values and designation of soil classes, which include the corresponding uncertainties. From a methodological point of view, this survey leads to the following recommendations: (1) perform both active (multi-analysis surface waves) and passive (ambient vibration arrays) measurements to derive dispersion curves in a broadband frequency range; (2) perform active acquisitions for both vertical (Rayleigh wave) and horizontal (Love wave) polarities. Even when the logistic contexts are sometimes difficult, the use of surface-wave-based methods is suitable for station-site characterization, even on rock sites. In comparison with previous studies that have mainly estimated VS30 indirectly, the new values here are globally lower, but the EC8-A class sites remain numerous. However, even on rock sites, high frequency amplifications may affect accelerometric records, due to the shallow relatively softer layers.  相似文献   

11.
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT.  相似文献   

12.
黏弹性与弹性介质中Rayleigh面波特性对比研究   总被引:8,自引:7,他引:1       下载免费PDF全文
Rayleigh面波的频散特性可以用来研究地表浅层结构. 本文使用时域有限差分法来模拟复杂黏弹性介质中的Rayleigh面波,研究了Q值对面波频散特性的影响.文中采用旋转交错网格有限差分,以非分裂卷积形式的完全匹配层为吸收边界,推出了求解二阶位移-应力各向同性黏弹性波动方程的数值方法.为了检验数值解的精度,首先将简单模型的正演结果与解析解对比,验证了方法的正确性;然后模拟了横向缓变层状介质和含有洞穴的介质中的面波,对弹性和黏弹性介质中的面波的频散特性进行对比分析.模拟结果表明浅层Q值对面波的频散特性有显著的影响;强吸收情况下,高阶面波的能量相对低阶面波能量显著增强.  相似文献   

13.
李建平 《地震学报》2018,40(1):24-31
浅层地震反射波法和面波方法是两种相互独立发展的地震勘探方法,在各自的数据采集和处理中,对方都是作为干扰信号而存在. 本文利用浅层地震反射资料中被视为干扰的面波信号,通过成熟的多道面波勘探技术处理浅层地震反射资料,在频率-波数域中提取多阶振型面波的频散曲线,并基于该曲线反演浅地表S波速度结构. 这种方法充分开发利用了已有数据,无需单独的面波数据采集系统,同时为解释浅层地震反射资料提供了额外的信息约束. 结果表明:浅层地震反射资料中可提取出可靠的多阶振型面波频散曲线,并能给出稳定的反演结果,同时,面波反演的多解性可以通过高阶振型反演得以进一步约束;低速层的存在是观测频散曲线出现振型跳跃或呈“之”字形回折的必要条件而非充分条件.   相似文献   

14.
针对低频Rayleigh表面波,设计了部分埋入式工字形截面周期波屏障。利用有限元方法计算了结构的频散曲线,分析了带隙的形成机理,讨论了屏障埋入土体深度和截面参数对带隙的影响,在此基础上设计了具有低频超宽衰减域的梯度及分段梯度波屏障并计算了其传输谱。结果表明:周期波屏障存在较宽带隙,板埋入深度和端部尺寸是影响带隙的关键参数,通过参数调节可实现不同频段Rayleigh波的调控。工字形变截面波屏障比等截面具有更优越的隔震性能且节省材料。梯度及分段梯度波屏障显著拓宽了衰减域的频率范围,对1.5~20 Hz范围内的Rayleigh表面波实现了全覆盖,用小尺寸控制了大波长。  相似文献   

15.
场地瑞利波频散特性的测试方法研究   总被引:2,自引:2,他引:0  
瑞利波频散特性测试是波速结构的面波探测方法中的关键环节。本文不进行速度结构的比较,而是直接与表面波谱分析方法比较所提取的频散曲线,从而将反演方法可能引入的不确定性因素剥离了出去,能够更客观地说明地脉动台阵方法的有效性和精度。在唐山26个场地进行的两种方法中美联合观测和分析结果表明。地脉动方法在83%的场地达到了与表面波谱分析方法相同的精度,是一种经济有效的场地瑞利波频散特性和波速结构测试方法。  相似文献   

16.
中国东部海域地壳-上地幔瑞利波速度结构研究   总被引:17,自引:8,他引:9  
为了进一步了解中国东部沿海及相邻海域的地壳-上地幔结构特征,对该区域的构造演化历史、地震活动及深部构造等方面研究提供一些基础资料,利用31个数字地震台记录的高质量瑞利波资料,采用一种新的混合路径频散的网格反演方法(Occam方法),对中国东部海域瑞利波群速度横向不均匀分布进行了初步研究.根据反演得到的10-150s共36个中心周期的群速度分布特征,以及几个典型地点的剪切波速度结构的深度变化,对研究区域内各构造单元的划分以及它们在速度结构和上地幔低速层埋深等方面的特征进行了讨论。  相似文献   

17.
The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread.  相似文献   

18.
为减小倾斜边坡中能量较强的近场体波对面波识别的干扰,确保多道面波分析方法接收到的瑞雷波分量具有较强的能量,本文通过分析地下震源在倾斜边坡产生的瑞雷波及其传播规律,基于几何地震学提出了在倾斜地表生成瑞雷波的最小偏移距的经验公式,建立了界面起伏的层状倾斜边坡模型,从而获得模拟共炮点记录,并将基于共炮点记录得到的地表质点运动...  相似文献   

19.
Rayleigh wave imaging is efficient in estimating the shear- (S) wave velocity in near-surface exploration. The key is to accurately extract the dispersion of Rayleigh wave. We propose a method to calculate the dispersion of the active-source Rayleigh wavefield by using the Aki formulation. The spectrum after the cross correlation of two-channel records in the frequency domain is expressed by the Bessel function. Using the corresponding relation between the zero point of the spectrum real part and the Bessel function root, the phase velocity at the discrete frequency point is obtained and the dispersion curve is extracted. First, the theoretical basis and calculation method used in the active-source Rayleigh wave data are introduced. Then, three sets of theoretical models are calculated by this method and the results are consistent with the theoretical dispersion. Finally, we process a group of real Rayleigh wave data and obtain the phase velocity profiles and compared them with the results obtained by the multichannel surface wave analysis method. The effectiveness and applicability of the Aki method in active-source data processing are verified. Compared with multichannel wave processing, the advantage of the Aki method lies in the use of two-channel data in a single-shot record. When the number of acquisition channels in a shot gathers is insufficient or there is a bad channel, the quality of the extracted dispersion is guaranteed.  相似文献   

20.
地震槽波的数学-物理模拟初探   总被引:2,自引:0,他引:2       下载免费PDF全文
针对地震槽波在低速层的传播特性,开展了煤层内地震槽波勘探的数值模拟和物理模拟研究的初探工作.在数值模拟研究方面,采用交错网格有限差分法对煤层中的地震槽波进行三分量全波场模拟.基于波场快照和人工合成地震记录研究了不同模型中的波场特征和各种波型的传播规律.在物理模拟方面,通过选用不同配比的环氧树脂和硅橡胶类材料构建地震槽波物理模型,利用透射法和反射法观测系统获得了清晰的地震槽波记录以研究槽波的地震学特征.研究表明,在煤层内槽波的地震波场中,Love型槽波的能量小于Rayleigh型槽波的SV分量,大于Rayleigh型槽波的SH分量.相对于Love型槽波和Rayleigh型槽波的SH分量,Rayleigh型槽波的SV分量在围岩中的泄露能量较强.在煤层界面附近的围岩中,地震波仍以槽波形式传播,随着距离的增加能量逐渐衰减.随着煤层变薄,煤层槽波主频向高频方向移动,频散现象增强,传播速度增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号