首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shikotan Island of the Lesser Kuril Ridge forms, together with the Vityaz Ridge, the outer arc of the Kuril island-arc system. Marine Pliocene sediments first registered on the island contain diatoms and palynomorphs, which allow their dating. The thin Pliocene semiconsolidated sediments constitute the upper part of sections in the coastal and central areas of the island. They rest with the erosional surface and stratigraphic hiatus upon the Upper Cretaceous-Lower Paleogene (Campanian-Danian) Malokuril’sk Formation. The Pliocene sediments were deposited in relatively shallow-water environments of open sea near the shore, with a forest-free landscape and freshwater basins. The occurrence of reworked marine Oligocene and Miocene diatoms in these sedimentary rocks indicates their development in the Lesser Kuril Ridge area and contribution of their eroded material to the formation of Pliocene sequences. Wide development of Pliocene Marine sediments on Shikotan Island is evidence for ascending movements in the region during the post-Pliocene period, which is also characteristic of the Greater Kuril Ridge islands. The composition and formation conditions of the Pliocene sediments in the outer arc of the Kuril island-arc system suggest that the southwestern (Lesser Kuril Ridge) and northeastern (Vityaz Ridge) segments of this single anticlinal structure evolved under different tectonic regimes through the Pliocene.  相似文献   

2.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   

3.
The lithostratigraphic subdivision of the Kuhlan Formation in Yemen is reviewed based on the previous literature and new examination of five widely spaced outcrops in the Kuhlan Affar, Jabal Maswar, Jabal Salab, Wadi Hajar, and Ras Falanj areas. Following the guidelines set by the North American Commission on Stratigraphic Nomenclature, Kuhlan Formation, with an age as latest Triassic to the Middle Jurassic, includes three members, Azzan, Souq, and Hesn, in an ascending order. Azzan member consists mainly of about 40 m of whitish coarse grained sandstone with many conglomeratic horizons. The Souq member is characterized by its reddish to brownish sandstones as well as the presence of polygonal structures at in the central part of this member, with a thickness of about 70 m. The Hesn member consists dominantly (80 m) of whitish sandstones with some marl intercalations at its topmost part. The Kuhlan Formation was deposited in a fluviatile environment.  相似文献   

4.
The southeastern Georgetown Inlier (Greenvale Province) consists of Early Palaeozoic metamorphic rocks in fault contact along the Lynd Mylonite Zone with the Palaeoproterozoic to Mesoproterozoic craton of northeastern Australia. It has a central assemblage of metamorphosed silicic volcanic and sedimentary rocks considered equivalent to the Late Cambrian to Early Ordovician Seventy Mile Range Group that developed in an extensional backarc in the Charters Towers Province to the southeast. In the western part of the Greenvale Province, the Oasis Metamorphics have a U – Pb zircon SHRIMP metamorphic age of 476 ± 5 Ma and are intruded by the granodioritic Lynwater Complex with U – Pb zircon ages of 486 ± 5 Ma and 477 ± 6 Ma. These ages are consistent with these rocks forming basement and intrusive equivalents to the extensional volcanic basin. Existing geochronological constraints on the Halls Reward domain, located at the eastern margin of the province, are consistent with it being basement to the extensional basin. Several domains are recognised in the Greenvale Province with either dominantly steep or low to moderate dips of the main foliation, and each experienced multiple deformation with locally up to four overprinting structural phases. Steepening of foliation in several of the domains is attributed to contractional deformation in the Early Silurian that is inferred to have overprinted low-angle foliation developed during extensional tectonics in the backarc setting. Contractional deformation related to the Early Silurian Benambran Orogeny is considered responsible for multiple deformation in the Greenvale Province and reactivation of domain-bounding faults.  相似文献   

5.
在系统分析青藏高原新生代98个残留盆地类型、形成构造背景、岩石地层序列的基础上, 对青藏高原古新世—始新世、渐新世、中新世及上新世构造岩相古地理演化特征进行了讨论: (1)古新世—始新世: 松潘—甘孜和冈底斯带为大面积构造隆起蚀源区.塔里木东部、柴达木、羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积.高原西部和南部为新特提斯海.(2)渐新世: 冈底斯—喜马拉雅和喀喇昆仑大范围沉积缺失, 指示上述地区大面积隆升.沿雅江自东向西古河形成(大竹卡砾岩).西昆仑和松潘—甘孜地区仍为隆起蚀源区.塔里木、柴达木、羌塘、可可西里地区主体表现为大面积构造压陷湖盆沉积.塔里木西南部为压陷盆地滨浅海沉积.渐新世末塔里木海相沉积结束.(3)中新世: 约23 Ma时高原及周边不整合面广布, 标志高原整体隆升.塔里木、柴达木及西宁—兰州、羌塘、可可西里等地区主体表现为大面积的构造压陷湖盆沉积; 约18~13 Ma高原及周边出现中新世最大湖泊扩张期.约13~10 Ma期间, 藏南南北向断陷盆地形成, 是高原隆升到足够高度开始垮塌的标志.(4)上新世: 除可可西里—羌塘、塔里木、柴达木等少数大型湖盆外, 大部分地区为隆起剥蚀区.由于上新世的持续隆升和强烈的断裂活动, 使大型盆地的基底抬升被分割为小盆地, 湖相沉积显著萎缩, 进入巨砾岩堆积期, 是高原整体隆升的响应.高原从古近纪的东高西低格局, 经历了新近纪全区的不均衡隆升和坳陷, 最终铸就了西高东低的地貌格局, 青藏作为一个统一的高原发生了重大的地貌反转事件.   相似文献   

6.
《International Geology Review》2012,54(16):2000-2014
Basement exposed in the Placer de Guadalupe–Plomosas uplift in northern Mexico provides important clues for the geologic evolution of the region. The stratigraphic units form stacked thrust sheets of psammitic and calcareous formations, interlayered with magmatic rock. The eastern calcareous and quartzite formations exhibit structures associated with ductile deformation, whereas the upper stratigraphic units only contain structures formed via younger brittle deformation. Porphyry interlayered in the upper Plomosas Formation has a U-Pb zircon age of 171 ± 1 Ma. This age is consistent with its stratigraphic position, interbedded quartzarenites with a maximum depositional age of ~168 Ma. Granite flakes within the Horquilla Formation are dated at 209 ± 3 Ma, and the La Viñata quartzite exhibits a maximum age of ~193 Ma. The Upper Plomosas Formation correlates well with the arc-related Middle Jurassic Nazas Formation of northeastern Mexico, constituting the first report of a Jurassic continental margin arc outcrop in the ‘Central Mexican Gap zone’. We document Late Norian to Bajocian ages for the stratigraphic units cropping out in the Placer de Guadalupe area. The Jurassic age cluster indicates that the Nazas Arc magmatism in the region occurred during the Late Triassic and ended in the Middle Jurassic times. Permian ages previously assigned to these rocks and the occurrence of a Permo–Triassic deformation event have to be dismissed.  相似文献   

7.
位于西昆仑山前塔西南地区的其木干剖面发育连续完整的新近纪地层,总厚1831.3m.从古近系—新近系的微角度不整合接触界面向上依次出现中新统乌恰群的克孜洛依组、安居安组和帕卡布拉克组,上新统的阿图什组和西域组底部.其木干剖面克孜洛依组至阿图什组整体为1个二级层序,可划分为9个三级层序.通过细致分析沉积相与层序发育特征,揭...  相似文献   

8.
The Burdekin River is an example of a class of tropical streams which experience two to four orders of magnitude variation in discharge, in response to seasonal but erratic monsoonal rainfall. Floods of the Burdekin rise abruptly, reaching peak discharges of up to 40,000 m3 s-1 in less than 24 h; maintain peak flow for up to a few days, and recede exponentially. The geomorphology and deposits of these rivers reflect the extreme discharge fluctuations, and have not previously been described. A stretch of the upper Burdekin River comprising four bends and one straight reach was examined near the town of Charters Towers. The river bed is largely exposed for most of any year, with a small, misfit perennial channel carrying low stage flow. Major geomorphic elements of bends include point bars with ridge-and-swale topography, three distinct types of chute channels, avalanche slipfaces up to 5 m or more high around the downstream edges of bars, and on the outer part of one point bar an elevated, vegetated ridge. Straight reaches are flat or gently inclined, sand- and gravel-covered surfaces. Much of the river bed is covered by well sorted, in places gravelly, coarse to very coarse-grained sand with local accumulations of pebble to boulder gravel. Lower parts of the river bed are periodically draped by mud which is desiccated on exposure. Dunes and plane beds are the most commonly occurring bedforms, with local development of gravelly antidunes. Most bank tops and upper, vegetated bars are covered by silt and fine-grained sand. The river bed also hosts a low-diversity but locally high-abundance, flood-tolerant flora dominated by the paperbark tree Melaleuca argentea, which plays an important role in controlling the distribution of sediment. The gross geomorphology of the river bed and most of the sedimentary features are interpreted as having formed during major (bankfull or near bankfull) flows, which have a recurrence of about 18 years (based on 65 years hydrographic data). The initial rapid drop in discharge following flood peaks appears to preserve flood peak features on upper bars more or less intact, whereas lower areas are subjected to variable degrees of modification during falling stage and by more frequent, non-bankfull discharge events.  相似文献   

9.
During the Neogene and Quaternary, tectonic and climatic processes have had a profound impact upon landscape evolution in England and, perhaps as far back as 0.9 Ma, patterns of early human occupation. Until the Late Miocene, large-scale plate tectonic processes were the principal drivers of landscape evolution causing localised basin inversion and widespread exhumation. This drove, in places, the erosion of several kilometres of Mesozoic cover rocks and the development of a regional unconformity across England and the North Sea Basin. By the Pliocene, the relative influence of tectonics on landscape evolution waned as the background tectonic stress regime evolved and climatic influences became more prominent. Global-scale climate-forcing increased step-wise during the Plio-Pleistocene amplifying erosional and depositional processes that operated within the landscape. These processes caused differential unloading (uplift) and loading (subsidence) of the crust (‘denudational isostasy’) in areas undergoing net erosion (upland areas and slopes) and deposition (basins). Denudational isostasy amplified during the Mid-Pleistocene Transition (c.0.9 Ma) as landscapes become progressively synchronised to large-scale 100 ka ‘eccentricity’ climate forcing. Over the past 0.5 Ma, this has led to the establishment of a robust climate record of individual glacial/interglacial cycles enabling comparison to other regional and global records. During the Last Glacial-Interglacial Transition and early Holocene (c.16–7 ka), evidence for more abrupt (millennial/centennial) scale climatic events has been discovered. This indicates that superimposed upon the longer-term pattern of landscape evolution is a more dynamic response of the landscape to local and regional drivers.  相似文献   

10.
根据昌乐、临朐一带古近-新近纪地层重点勘查成果及发现的孢粉、微体及腹足类化石等资料,认为昌乐五图组中的煤及油页岩地层年代为古近纪中始新世;临朐牛山七贤店山沟中出露的一套粘土岩、泥岩夹含油泥岩,可与五图组上煤段对比,其地层年代为中始新世晚期;临朐山旺村山沟中出露的一套粘土岩夹硅藻岩等,前人认为地层年代为中新世山旺组.本次勘查获得的孢粉谱对其提供了佐证;柳山坪南头村山顶上出露一套厚层花岗质含砾粗砂岩(底部夹泥煤一层),平覆在花岗片麻岩山顶,依孢粉谱与山旺组对比,其地层年代要晚于山旺组,可与尧山花岗片麻岩山顶的尧山组相比。地层年代属于上新世尧山组。  相似文献   

11.
Central Queensland lies on the passive margin of eastern Australia and owes its landscape to processes that began following rifting and opening of the Tasman Sea. The modern landscape is the result of long-term processes of landform development, and the landforms themselves are the evidence of these processes. Hence, interpreting their significance provides an understanding of long-term landscape evolution. Along the eastern Australian coast, numerous rivers drain into the sea but among these, there are two that stand out: the neighbouring Fitzroy and Burdekin Rivers in central Queensland. These two streams have by far the largest catchments of any rivers along the eastern seaboard of Australia. The Burdekin and Fitzroy catchments contain widespread remnants of Cenozoic deposits, which accumulated predominantly in fluvial and lacustrine environments established during the Palaeogene. Alluvial sediments were supplied by erosion of nearby uplands, and accumulated in depressions and basins on a prior land surface. Volcanic activity also resulted in large lava flows in central western areas. Water was the main agent of sediment transport, distributing unconsolidated deposits along the drainage networks of the time, some of which were directed inland. It is inferred that during the Palaeogene, the divide between coastward and inland draining streams was further to the east than it is at present. Several basins were located west of the former coastal divide, and were characterised by continental environments of deposition in a generally westward drainage system. With continued accumulation of sediments, individual basins overflowed and merged to form a widespread flat-lying Palaeogene landscape that concealed an earlier land surface on which bedrock was more extensive. In the Early Cenozoic, there was a change from the depositional phase that resulted in the continental sequence, to an erosional phase that developed the modern landforms. The change from deposition to erosion probably started during the Palaeogene. Erosion continued through to the present, re-exposing parts of the basal Palaeogene sequence and earlier Mesozoic land surface. The erosional phase that shaped the landforms of the modern Burdekin and Fitzroy catchments can be explained by slowly evolving drainage basins in the interior being captured by small coastal streams—the predecessors of the Burdekin and Fitzroy Rivers. The coastal streams were short and steep in comparison with those in the interior, allowing a more active erosional environment along the coast. As the coastal streams expanded, the drainage divide moved rapidly westwards. Stream capture began a phase of regional erosion, which transported large quantities of sediments to the coast. The sediments contributed to coastal and nearshore features similar to the Holocene high sea-level examples at the mouth of the Burdekin River in the north, and the Fitzroy Delta and the Keppel Coast in the south. Large volumes of sediments were also transported beyond the present coast during low sea-levels of the Cenozoic, forming similar coastal features and contributing to a major eastward bulge on the central Queensland continental shelf. The emptying of continental basins has paralleled the development of the continental shelf bulge from the coast to the Marion Plateau.  相似文献   

12.
In the Lake Frome area of South Australia there is a sedimentary sequence of non‐marine (or possibly distant marginal marine) pale‐green to grey, fine elastics and carbonates (Namba Formation). The base of these deposits is Medial Miocene in age and they are overlain unconformably by Pleistocene (and ? Pliocene) sediments. The Miocene sequence is equivalent to the Etadunna Formation of the Lake Eyre Basin, and the clay mineralogy is similar.

Combining evidence from mineralogy, palynology, and vertebrate palaeontology, a warm high‐rainfall climate operating on a subdued topography is indicated for the lower part of the Miocene Lake Frome sequence. This caused the illite‐chlorite‐kaolinite suite of the largely Precambrian provenance to be transformed to smectite and randomly‐interstratified clay. A palygorskite‐dolomite assemblage accumulated in alkaline lakes of extreme marginal marine situation during periods of seasonal dry intervals superposed on the previous climate.

A change to illite‐dominated clay, stratigraphically about halfway up the sequence, occurred simultaneously with initial uplift of the Flinders Ranges. These ranges were previously represented by, at the most, a region of low hills. Uplift, without intervention of climatic change, is sufficient to alter the clay mineralogy by promoting increased leaching. Higher in the sequence, and correlated with the major phase of uplift in the Flinders Ranges, smectite re‐appears. In this case the clay suite is believed to have resulted from increased aridity. The smectite‐rich sediments accumulated above the water table in extensive fan and mud‐flow deposits.

The Neogene sequence records a major palaeogeographic change from low energy rivers, swamps, and lakes in a low relief terrain, probably connected to the sea, to a landscape approaching that of the present during Miocene‐Pliocene times. When the Pleistocene Millyera Formation accumulated, the landscape resembled the present, though the ancestral Lake Frome was larger, and rainfall higher.  相似文献   

13.
关中盆地位于华北板块西南缘,为一新生代断陷盆地,具典型地堑形态,沉积巨厚的新生代地层。针对盆地新近纪上新世地层形成时代有争议、地层层序划分不明确、沉积相界定较笼统等问题,利用钻测井资料及野外调研,结合前人研究成果,对盆地新生代地层进行了重新划分,明确了上新世各地层形成时代及其地层层序划分和沉积相类型。研究结果表明,上新统可划分为蓝田组(11Ma—7 Ma)、灞河组(7.3 Ma—2.6 Ma)、张家坡组(3.4 Ma—2.6 Ma);新生代层序地层可划分为古近系构造层序、中新统构造层序、上新统构造层序和第四系构造层序等4个一级层序,存在6个构造层序界面。蓝田组以"三趾马红黏土"的风成沉积为特征。灞河组沉积时期,关中盆地的西安凹陷为一套冲(洪)积相、河流、三角洲相沉积,固市凹陷为一套冲(洪)积、河流、三角洲及滨浅湖相沉积;盆地边部开始出现小范围的风成黏土沉积。张家坡组以河湖相沉积为主,沉积中心向南移;盆地南北两侧或边部为冲(洪)积扇相、河流相及三角洲相沉积,边部也有小范围的风成黏土沉积。  相似文献   

14.
The low-relief summit plateaus (high plains) of the Southeastern Highlands are remnants of a widespread peneplain that was initially uplifted in the mid-Cretaceous and reached its current elevation in the Miocene–Pliocene. There are two mutually exclusive scenarios for the origin of the high plains: an uplifted peneplain originally formed by long-term denudation through the Mesozoic and late Paleozoic, contrasting with creation by ~1.5 km of erosion following the mid-Cretaceous uplift (based on fission track data). The hypothesis of a Mesozoic peneplain is consistent with the low relief of the high plains, the ca 200 Ma available to form the peneplain, and the pre-late Mesozoic oxygen-isotope composition of secondary kaolinites in weathering profiles on the high plains. If the ca 30 Ma cooling event recorded by the fission track data is due to ~1.5 km of denudation, then the high plains peneplain formed in the Late Cretaceous–early Paleogene, close to sea-level, and was uplifted in the early Paleogene, because evidence from basalts and fossil floras shows that the high plains surface was moderately elevated in the Eocene. This scenario is difficult to reconcile with the long-term erosion necessary to form such an extensive peneplain, the lack of sedimentary evidence for early Paleogene uplift, and the relatively small reduction in elevation (~250 m) that would have resulted from ~1.5 km of erosion (because the crust in this area is in isostatic equilibrium). Furthermore, extensive Cretaceous–early Paleogene denudation should have removed the pre-late Mesozoic secondary kaolinites present in weathering profiles in the highlands. There is no evidence that the Mesozoic peneplain was buried by kilometres of sediment and then exhumed in the Cretaceous–early Paleogene. I therefore conclude that the high plains of the Southeastern Highlands are the remnants of a Mesozoic peneplain uplifted in the mid-Cretaceous and again in the Miocene–Pliocene.  相似文献   

15.
季强 《江苏地质》2017,41(1):2017/1/1-2017/1/25
鲁东地区是我国研究晚白垩世和早古近世地层的经典地区,研究历史可追溯到20世纪20年代,积累了大量有关白垩纪和古近纪地层划分与对比的资料。主要介绍在胶州市西郊实施的鲁科一井所揭示的白垩-古近系界线地层的剖面资料。根据岩芯剖面的研究,该区白垩-古近系界线地层自下而上可分为红土崖组、史家屯组和胶州组。对红土崖组的含义重新作了厘定,该组是指介于下伏地层辛格庄组与上覆地层史家屯组之间的1套以产丰富恐龙化石为特征的洪积相、冲积相红色碎屑沉积,客观上包括了原来“金岗口组”的地层。史家屯组是重新恢复使用的一个岩石地层单位,由原先的红土崖组中的“史家屯玄武岩段”提升而来,该组位于王氏群顶部,为一套火山-沉积岩系,厚度可达970余m,与下伏地层红土崖组和上覆地层胶州组均为整合接触。胶州组以1套紫红色粉砂岩为主,夹灰绿色-黄绿色粉砂岩、泥灰岩及少量砂砾岩,与下伏地层王氏群史家屯组为整合接触,但与上覆地层的关系仍不清楚。此外还对鲁东地区晚白垩世地层的划分与对比、恐龙动物群的分布、地质事件、古气候和古环境等进行了探讨,提出白垩-古近纪之交时期,鲁东地区经历了这样一个过程:恐龙繁盛—恐龙消亡—火山喷发—地外撞击(?)—森林大火—白垩纪生物灭绝—古近纪生物群复苏。该过程表明:(1) 将鲁东地区白垩-古近系界线置于胶州组172—148层的这段地层中是合适的;(2) 白垩纪末期生物灭绝与地外撞击事件的关系可能比较密切,而非鸟型恐龙的消亡看来与地外撞击事件的关系不大;(3) 从世界范围来看,非鸟型恐龙均消亡于白垩纪末期撞击事件之前,目前还没有任何证据证明陆地上非鸟型恐龙的消亡与该事件直接相关;(4) 白垩纪晚期曾发生过一系列地质事件,这些事件导致当时的气候、生态、环境等逐渐恶化,生物逐渐失去它们原有的家园,数量和多样性逐步减少,一步一步走上不归之路。非鸟型恐龙也是一样,它们的消亡不是一个事件造成的,而是阶步式的,是多个事件的影响叠加造成的结果。  相似文献   

16.
通过对滦平盆地西瓜园组(上侏罗统-下白垩统)暗色泥岩和油页岩的岩相特征及其中所发现的各种恐龙脚印化石的研究,分析了恐龙脚印化石形成的环境。认为在前扇三角洲或深湖-半深湖环境的暗色泥岩中出现恐龙脚印化石,说明湖平面变化频繁,在枯水期,湖平面下降,前扇三角洲或深湖-半深湖相暗色泥岩暴露出水面,一些恐龙经过此处到低洼处喝水,留下脚印。由此推断中国东部古近纪陆相断陷湖盆中的暗色泥岩所夹的砂砾岩和盐岩并不全是深水重力流成因,暗色泥岩所夹的盐岩也不一定是深水成因;并建立了暗色泥岩中所夹的砂砾岩和盐岩的成因沉积模式。  相似文献   

17.
The Sierra de Pie de Palo located between 67°30′–68°30′ W and 31°00′–32°00′ S in the Argentine Western Sierras Pampeanas in Argentina is a distinct basement range, which lacks thermochronological data deciphering its exhumation and uplift history below 200 °C. Integrated cooling histories constrained by apatite fission-track data as well as (U–Th)/He measurements of zircon and apatite reveal that the structural evolution of this mountain range commenced during the Late Paleozoic and was mainly controlled by tectonically triggered erosion. Following further erosional controlled exhumation in a more or less extensional regime during the Mesozoic, the modern topography was generated by denudation in the Paleogene during the early stage of the Andean deformation, whereupon deformation propagated towards the west since the Late Mesozoic to Paleogene. This evolution is characterised by a total of 3.7–4.2 km vertical rock uplift and by 1.7–2.2 km exhumation with a rate of 0.03–0.04 mm/a within the Sierra de Pie de Palo since ca. 60 Ma. Onset of uplift of peak level is also referred to that time resulting in a less Pliocene amount of uplift than previously assumed.  相似文献   

18.
柴达木盆地归属问题的讨论   总被引:2,自引:2,他引:2       下载免费PDF全文
柴达木盆地西部已找到17个第三系油源的油田,其主要烃源岩层位是陆相始新统下干柴沟组。也有论文提出下干柴沟组是海侵湖泊沉积,并被命名为下干柴沟海侵。最近又有论文提出该组地层不是深湖相,应属于泻湖相,是塔里木盆地西南始新世海湾泻湖相带被阿尔金断裂东错的残留泻湖部分,或塔里木盆地原型盆地的东部被错移部分,并提出重新认识柴达木盆地西部的油气勘探方向。本文针对上述观点展示了塔里木盆地西部海湾古新统-始新统的吐依洛克组、阿尔塔什组、齐姆根组、盖吉塔格组、卡拉塔尔组的沉积相和典型的海相生物化石群,它完全不同于柴达木盆地古新统-始新统的路乐河组和下干柴沟组沉积相和陆相湖泊生物化石群,两者是截然不同的。不能支持柴达木盆地西部与塔里木盆地西南海湾在老第三纪时属于同一盆地或同一沉积单元。“源控论”依然是指导柴达木盆地西部陆相沉积油气勘探的理论依据。把塔里木盆地西南已知油气田的烃源岩划归老第三系海相沉积,显然是误解,把塔里木盆地西南老第三系海相油气勘探部署推广到柴达木盆地西部陆相沉积区也是一种误导。科学的古地理观将有助于勘探工作的正确部署。  相似文献   

19.
黑龙江汤原断陷第三纪地层层序及时代   总被引:11,自引:0,他引:11  
依据黑龙江汤原断陷30口井的岩性及古生物资料,建立了汤原断陷古近纪、新近纪地层层序。依据孢粉、藻类、植物和介形类化石建立19个生物化石组合,讨论了各组的时代及其与邻区的对比。依据汤参3井(25.0-100.0m)和互6井(138.5-237.5m)岩性及孢粉组合将道台桥组引入汤原断陷。汤原断陷地层层序为古新统乌云组,始新统新安村组、达连河组,渐新统宝泉岭组,中新统富锦组,上新统道台桥组。  相似文献   

20.
A Late Ordovician (Sandbian), Scoto‐Appalachian brachiopod fauna from the Mweelrea Formation in western Ireland confirms a location for the South Mayo Trough adjacent to the Laurentian margin, characterized at this time by a succession of marine excursions over fluviatile environments. The new, younger biostratigraphical data help to constrain the timing of late Grampian folding of this part of the South Mayo Trough. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号