首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N. Marchildon  M. Brown   《Tectonophysics》2003,364(3-4):215-235
In this study, we present quantitative spatial information on the one- and two-dimensional distribution of inferred melt-bearing structures in anatectic supracrustal rocks of the Southern Brittany Migmatite Belt, south of the transcurrent South Armorican Shear Zone (SASZ); based on these data, we infer the mechanism of melt extraction from partially molten crust. Former melt-bearing structures include foliation-parallel leucosomes and cross-cutting granitic leucosomes that infill inter-boudin partitions and extensional shear surfaces, as well as discordant dykes of granite. Petrographic (i.e., mineralogical and microstructural) continuity of granite from structure to structure suggests that they once formed a continuous melt-bearing network. Measurements along one-dimensional line traverses perpendicular to layering of stromatic migmatite exposed in clean, sub-horizontal outcrop surfaces provide information about thickness and spacing distributions of foliation-parallel leucosomes. Most leucosome thicknesses fall in the range of 1–10 mm, with upper limits around 20–30 mm. The number of thicker layers decreases abruptly with increasing thickness, which is inconsistent with scale-invariance. This suggests that leucosome formation was controlled by short-range melt movement along grain boundaries to form melt-rich layers constrained by pre-existing compositional layering. Spacing distributions also are not scale-invariant; however, the large percentage of leucosomes (40–60%) in these line traverses suggests that spacing distributions may be controlled in part by impingement of leucosomes, making it difficult to derive genetic information from these data. Qualitative observation of inferred melt-bearing structures in mutually perpendicular two-dimensional exposures from the same outcrop reveals anisotropy of the leucosome network related to a well-developed sub-horizontal quartz–feldspar lineation reflecting stretching associated with transcurrent movement along the SASZ. Analysis of these two-dimensional distributions using the box-counting method corroborates the observed anisotropy, but indicates that leucosome morphology (and perhaps distribution) is not scale-invariant. The applicability of the box-counting method, or of fractal analysis, to understanding melt movement in migmatites is discussed in light of these results. Based on the anisotropy of melt-bearing structures, we infer that melt-movement in structures now represented by layer-parallel leucosomes was primarily sub-horizontal. These layers fed steeply dipping structures now represented by cross-cutting leucosomes, in particular those developed at inter-boudin partitions, and granite dykes. The formation and orientation of these steeply dipping structures was in part controlled by far-field stresses related to dextral displacement along the SASZ. Melt extraction is inferred to have occurred along these steeply dipping structures; extracted melt accumulated in plutons at higher crustal levels, such as the Quiberon, Sarzeau, and Guérande granites.  相似文献   

2.
Leucosomes and melanosomes in selected specimens of migmatitic, sillimanite-zone, pelitic schists are modal and chemical complements formed by segregation within originally homogeneous paleosomes. Systematic bulk chemical and modal variations in melanosomes can be used to infer the reactions by which leucosomes were generated.Trace element variations and relationships in melanosomes and leucosomes indicate that the migmatites behaved as closed systems during leucosome formation. Mass-balance evaluation of trace element relationships in the context of inferred leucosome-forming reactions suggest that trace elements essentially followed the melanosome phases initially containing them, as these phases reacted in leucosome generation. The trace element composition of a leucosome is given by the sum of those of the melanosome phases reacted, minus the trace element contents of any new solid melanosome phases produced by the reactions.Trace element relations are consistent with metamorphic equilibrium during leucosome generation, but suggest that once leucosome was segregated, equilibrium was not maintained between leucosome and melanosome.  相似文献   

3.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

4.
Isocon analysis of migmatization in the Front Range, Colorado, USA   总被引:2,自引:0,他引:2  
Isocon analysis has been applied to five sets of leucosome, mafic selvages and immediately adjacent mesosome in the migmatites from a 15-m outcrop in the Colorado Front Range. The results show: (i) mafic selvages formed from the adjacent mesosome by loss of felsic components and therefore the mesosomes are indeed palaeosomes or protoliths; (ii) the leucosomes did not form in a closed system from the palaeosome (in which case the material lost from the palaeosome during selvage formation would become the leucosome). The observed volumes and compositions of leucosomes require that the present leucosome must contain some material in addition to the felsic components lost from the selvages. The materials that must be added are leucotonalitic to granitic in composition, varying greatly in K/(Na + Ca) ratio. The trend in leucosome composition can be reproduced by assuming that a metasomatic exchange, KNa + Ca, modified originally leucotonalitic leucosomes to more K-rich compositions. These leucosomes most likely formed by injection of silicate melts accompanied, or followed, by metasomatism. The trend of leucosome compositions in this study reflects the general trend in the leucosome compositions which have been published from other areas, indicating that the proposed mechanism can be applicable to other regional migmatites.  相似文献   

5.
An exposure of sillimanite-rich, strongly deformed, stromatic,K-feldspar-bearing migmatites in the Monashee Terrane west ofRevelstoke, British Columbia, has been examined to determinethe process of migmatization and to evaluate whether the systemwas open or closed during leucosome formation. An anatecticorigin for the migmatites is supported by: (1) the minimum meltcomposition of the leucosomes; (2) textures suggesting a fluidbehavior of the leucosomes and local pegmatitic textures; and(3) P–T estimates (720–820C; 75–9 kbar)above vaporabsent melting conditions of muscovitt + quartz. To establish whether melt was extracted or added during migmatization,measured volume percents of leucosome were compared with estimatesof melt production modeled by muscovite + quartz dehydrationmelting. Quantitative estimates of volume percent of leucosomeat present in the outcrop are between 20 and 30%. The amountof melt produced from the model muscovite dehydration meltingreaction is constrained by measured modal percent of sillimanite(15–25%) in the outcrop and is dependent on modal proportionof muscovite in the unmelted protolith and the melt water contentUsing a muscovite-rich protolith and a melt water content of4 wt%, complete dehydration melting of muscovite results ina production of 54 vol % melt and 25 vol % sillmanite, indicatinga melt loss of 29 vol %. A melt water content of 6 wt% resultsin production of 41 vol % melt and 23 vol % sillimanite, indicatinga melt loss of 16 vol %. Melt loss may have occurred by meltmovement along foliation planes during flattening, during formationof shear bands or locally along subvertical fractures. Spatialproximity of the outcrop to the Monashee dcollement suggeststhat thrusting was localized to zones of high melt production,which in turn facilitated melt migration. KEY WORDS: migmatites; British Columbia; Monashee Tarrane; anatexis; melt extraction *Corresponding author. Present address: Department of Earth and Planetary Sciences, The Univenity of New Mexico, Albuquerque, NM 817131, USA  相似文献   

6.
The Santi Petri dome (western Betics, southern Spain) shows a core-complex-like structure, where migmatitic gneisses and schists outcrop below low-grade slates and phyllites, all of which form the basement of the Neogene Málaga basin. The migmatites and schists suffered a coaxial-flattening event during isothermal decompression and were later exhumed by ductile ESE non-coaxial stretching. Further exhumation was achieved by W- to SW-transport brittle low-angle normal faulting. Subsequently these extensional structures were gently folded in the core of a NE/SW-oriented antiform during the Tortonian. Finally the Santi Petri domal geometry was accentuated by the interference of orthogonal high-angle faults with ENE–WSW and NNW–SSE orientation. This core-complex-like structure, formed by superposition of extensional and compressive tectonic events, does not represent a classical, purely extensional core complex, which shows that metamorphic structure and geometry are not decisive criteria to define a core-complex.  相似文献   

7.
Abstract. A method for the quantitative analysis of the spatial relations of minerals is described. Dispersed distributions are formed by annealing and destroyed in post-tectonic migmatization. Aggregate distributions characterize solid-state differentiation, whereas leucosomes formed in systems of high fluid:rock ratio (in the examples studied, anatectic melts) show random distributions.
Quantitative textural analysis can be used to indicate whether migmatization was post-tectonic or earlier, though caution is necessary if post-migmatite cooling is slow or if there is some minor deformation. More importantly, it can be used to discriminate melt-present from melt-absent leucosomes; this is exemplified by a suite of metamorphic and anatectic migmatites from the Scottish Caledonides.
The textural evolution of anatexites with increasing melt percentage is traced. Initial feldspar porphyroblastesis occurs by Ostwald ripening via grain boundary melts; subsequently ophthalmites develop with fabrics and chemistry inherited from the palaeosome. At greater than 30% melt these inherited fabrics are wholly destroyed. Deformation prompts segregation into melanosome and leucosome; resultant leucosomes contain no inherited crystals. The scale of anatectic systems is fixed at the point at which segregation begins; ophthalmites provide evidence for melt and crystal transfer beyond original palaeosome boundaries. In contrast, metamorphic migmatites are necessarily small-scale systems because of diffusive constraints, and melanosomes are invariably produced.  相似文献   

8.
经历了复杂多期变形的片岩和片麻岩地区,褶皱形态及形成时代的判定是变质岩构造地质过程研究的难点之一。变斑晶内包裹物迹线记录了区域变质变形作用历史过程,可为通过野外露头观测难以确定的复杂褶皱形态判定提供新的研究途径。本文以美国科罗拉多州阿肯色河Texas Creek地区为例,尝试运用垂直于5期面理弯切轴的定向薄片中叠加面理(变斑晶包裹物迹线)由水平到竖直和由竖直到水平的几何形状变化,确定研究区内一个存在争议的复杂褶皱形态为背形,并推断该褶皱形成于区域内第1期变斑晶生长过程(约为1 500 Ma)中。  相似文献   

9.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

10.
Granulite facies gabbroic and dioritic gneisses in the Pembroke Valley, Milford Sound, New Zealand, are cut by vertical and planar garnet reaction zones in rectilinear patterns. In gabbroic gneiss, narrow dykes of anorthositic leucosome are surrounded by fine‐grained garnet granulite that replaced the host two‐pyroxene hornblende granulite at conditions of 750 °C and 14 kbar. Major and trace element whole‐rock geochemical data indicate that recrystallization was mostly isochemical. The anorthositic veins cut contacts between gabbroic gneiss and dioritic gneiss, but change in morphology at the contacts, from the anorthositic vein surrounded by a garnet granulite reaction zone in the gabbroic gneiss, to zones with a septum of coarse‐grained garnet surrounded by anorthositic leucosome in the dioritic gneiss. The dioritic gneiss also contains isolated garnet grains enclosed by leucosome, and short planar trains of garnet grains linked by leucosome. Partial melting of the dioritic gneiss, mostly controlled by hornblende breakdown at water‐undersaturated conditions, is inferred to have generated the leucosomes. The form of the leucosomes is consistent with melt segregation and transport aided by fracture propagation; limited retrogression suggests considerable melt escape. Dyking and melt escape from the dioritic gneiss are inferred to have propagated fractures into the gabbroic gneiss. The migrating melt scavenged water from the surrounding gabbroic gneiss and induced the limited replacement by garnet granulite.  相似文献   

11.
The St. Malo migmatitic dome represents an interesting example wherein migmatites arise from the anatexis of the surrounding gneisses. Petrographical and chemical data suggest that leucosome compositions are compatible with partial melting of the quartzo-feldsphathic fraction of the parent gneiss. The contribution of the incongruent melting of biotite to the melt does not exceed 5% of the parent rock.Petrogenetic modelling based on experimental data and assuming non modal batch melting show that the K, Rb, Ca, Sr, U and Th chemical patterns of these migmatites result in fact from the interaction of several mechanisms, namely: equilibrium partial melting, mixing between melts and refractory minerals (biotite and accessories), melt removal and late hydrothermal alteration. Zr, Y and Th which are mostly hosted in accessory minerals are significantly withheld from the melts and remain stored in melanosomes (metatexites) except when leucosomes are affected by mixing (diatexites). U is frequently enriched in the leucosomes as well as in some melanosomes suggesting external supply.  相似文献   

12.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


13.
The Feiran–Solaf metamorphic belt consists of low-P high-T amphibolite facies, partly migmatized gneisses, schists, amphibolites and minor calc-silicate rocks of metasedimentary origin. There are also thick concordant synkinematic sheets of diorite, tonalite and granodiorite orthogneiss and foliated granite and pegmatite dykelets. The gneissosity (or schistosity) is referred to as S1, and is almost everywhere parallel to lithological layering, S0. This parallelism is not due to transposition. The gneissosity formed during an extensional tectonic event (termed D1), before folding of S0. S1 formed by coaxial pure shear flattening strain (Z normal to S0, i.e. vertical; with X and Y both extensional and lying in S1). This strain also produced chocolate tablet boudinage of some layers and S1-concordant sills and veins. S1 has a strong stretching lineation L1 with rodding characteristics. Within-plane plastic anisotropy (lower ductility along Y compared to along X) resulted in L1-parallel extensional ductile shears and melt filled cracks. Continued shortening of these veins, and back-rotation of foliations on the shears produced intrafolial F1 folds with hinges parallel to the stretching lineation. F1 fold asymmetry variations do not support previous models involving macroscopic F1 folds or syn-gneissosity compressional tectonics. The sedimentary protoliths of the Feiran–Solaf gneisses were probably deposited in a pre-800 Ma actively extending intracratonic rift characterizing an early stage of the break-up of Rodinia.  相似文献   

14.
A sequence of prograde isograds is recognized within the Dalradian Inzie Head gneisses where pelitic compositions have undergone variable degrees of partial melting via incongruent melting reactions consuming biotite. Three leucosome types are identified. At the lowest grades, granitic leucosomes containing porphyroblasts of cordierite (CRD‐melt) are abundant. At intermediate grades, CRD‐melt mingles with garnetiferous leucosomes (GT‐melt). At the highest grades, CRD‐melt coexists with orthopyroxene‐bearing leucosomes (OPX‐melt), while garnet is conspicuously absent. The prograde metamorphic field gradient is constrained to pressures of 2–3 kbar below the CRD‐melt isograd, and no greater than 4.5 kbar at the highest grade around Inzie Head. A petrogenetic grid, calculated using thermocalc , is presented for the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system for the phases orthopyroxene, garnet, cordierite, biotite, sillimanite, H2O and melt with quartz and K‐feldspar in excess. For the implied field gradient, the reaction sequence predicted by the grid is consistent with the successive prograde development of each leucosome type. Compatibility diagrams suggest that, as anatexis proceeded, bulk compositions may have been displaced towards higher MgO content by the removal of (relatively) ferroan granitic leucosome. An isobaric (P = 4 kbar) TaH2O diagram shows that premigmatization fluids must have been water‐rich (aH2O > 0.85) and suggests that, following the formation of small volumes of CRD‐melt, the system became fluid‐absent and melting reactions buffered aH2O to lower values as temperatures rose. GT‐ and OPX‐melt formed by fluid‐absent melting reactions, but a maximum of 7–11% CRD‐melt fraction can be generated under fluid‐absent conditions, much less than the large volumes observed in the field. There is strong evidence that the CRD‐melt leucosomes could not have been derived by buoyantly aided upwards migration from levels beneath the migmatites. Their formation therefore required a significant influx of H2O‐rich fluid, but in a quantity insufficient to have exhausted the buffering capacity of the solid assemblage plus melt. Fluid : rock ratios cannot have exceeded 1 : 30. The fluid was channelled through a regionally extensive shear zone network following melt‐induced failure. Such an influx of fluid at such depths has obvious consequences for localized crustal magma production and possibly for cordierite‐bearing granitoids in general.  相似文献   

15.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

16.
北大别位于大别造山带的核部,分布着大量的造山带垮塌时期形成的混合岩,其于理解大别造山带的形成和演化有着重要的意义。北大别混合岩的原岩为TTG(D)岩石,因黑云母和角闪石的脱水熔融诱发深熔作用产生。顺层产出的为富斜长石浅色体,主要矿物组成为斜长石+石英+黑云母±钾长石±角闪石。伟晶岩脉或团块为富钾长石浅色体,主要矿物组成为钾长石+石英±斜长石±黑云母±角闪石。暗色体为变晶结构,主要矿物组成为角闪石+黑云母+斜长石+石英±单斜辉石;其中,暗色矿物角闪石和黑云母常常定向排列,具有明显的溶蚀结构;暗色体中浅色矿物颗粒较小,以斜长石和石英为主,指示部分熔融的残余产物。全岩地球化学特征表明,碱金属元素(Na、K等)、大离子亲石元素(Ba、K、La等)和LREE等优先进入酸性熔体,而相容元素和中-重稀土元素等残留在残余体中。浅色体与本区花岗岩相比,二者都有右倾的稀土配分模式,富集LREE,亏损HREE。但浅色体具有明显的Eu正异常,δEu值为2.48~6.55,而花岗岩则有弱的Eu负异常,并且浅色体中大颗粒斜长石相互构成框架结构,含量明显高于正常花岗岩熔体,表明浅色体更可能是熔体早期结晶的产物。  相似文献   

17.
The stromatic migmatites of Nelaug (Tvedestrand area, SouthernNorway) are investigated in detail. They show well developedlayers of leucosomes, mesosomes and melanosomes. It is establishedthat the mesosomes and leucosomes of these migmatites are differentfrom each other texturally, mineralogically, and chemically.Also combinations of leucosome plus adjacent melanosome portionsare chemically different from those of the mesosomes. Theseobservations do not agree with the findings of Mehnert (1971)and do not fit into his genetic model. The mesosome layers and the leucosome + melanosome combinationsare taken to represent the chemical compositions of the countryrock, a metagraywacke with relicts of primary rhythmic layering(Touret, 1965). The mineralogical composition of the layersvaries from granitic to tonalitic. Relict textures indicatethat the leucosome portions were initially occupied by layersof granitic composition relatively rich in K-feldspar, whereasthe mesosomes are the representatives of those metagraywackelayers which were relatively rich in plagioclase. An almostisochemical transformation of a paragneiss into the investigatedstromatic migmatite is established. Melting experiments performed at PH2O= 5 Kb yielded solidustemperatures of 640±7 °C for all layers. The Composition of plagioclases present in the different layersis explained by isochemical partial melting and in situ crystallization.The chemical, mineralogical, and textural findings support themodel of almost isochemical transformation already establishedfor the Arvika migmatites (Johannes & Gupta, 1982).  相似文献   

18.
It has long been recognised that within zones of intense non-coaxial deformation, fold hinges may rotate progressively towards the transport direction ultimately resulting in highly curvilinear sheath folds. However, there is a surprising lack of detailed and systematic field analysis of such “evolving” sheath folds. This case study therefore focuses on the sequential development of cm-scale curvilinear folds in the greenschist-facies El Llimac shear zone, Cap de Creus, Spain. This simple shear-dominated dextral shear zone displays superb three dimensional exposures of sheath folds defined by mylonitic quartz bands within phyllonite. Increasing amounts of fold hinge curvature (δ) are marked by hinge segments rotating into sub-parallelism with the mineral lineation (Lm), whilst the acute angle between the axial-planar hinge girdle and foliation (ω) also displays a sequential reduction. Although Lm bisects the noses of sheath folds, it is also clearly folded and wrapped-around the sheath hinges. Lm typically preserves a larger angle (θ) with the fold hinge on the lower limb (L) compared to the upper (U) limb (θL > θU), suggesting that Lm failed to achieve a steady orientation on the lower limb. Adjacent sheath fold hinges forming fold pairs may display the same sense of hinge arcing to define synthetic curvature, or alternatively opposing directions of antithetic curvature. Such patterns reflect original buckle fold geometries coupled with the direction of shearing. The ratio of long/short fold limbs decreases with increasing hinge curvilinearity, indicating sheath folds developed via stretching of the short limb, rather than migrating or rolling hinge models. This study unequivocally demonstrates that both hinges of fold pairs become curvilinear with sheaths closing in the transport direction recording greater hinge-line curvilinearity compared to adjacent return hinges. This may provide a useful guide to bulk shear sense.  相似文献   

19.
Metasediments of the Rantasalmi-Sulkava area (Finland) showprogressive regional metamorphism with migmatization. The metasedimentsare represented by various types of metapsammites (plagioclase-rich,quartz-rich, and layers of granitic compositions—somerich in microcline and others in plagioclase) and metapelites(dark and light layers). The migmatites of this area are of stromatic type. They consistof leucosomes, mesosomes, and light-coloured plagioclase-richlayers which do not fit the definition of leucosome. Melanosomes,which usually separate leucosomes and mesosomes in stromaticmigmatites, are almost absent. The leucosomes are of three types: (i) quartz-rich; (ii) cordierite-rich;and (iii) granitic. The quartz-rich leucosomes formed firstat subsolidus temperatures through recrystallization. The graniticleucosomes are considered to have developed via partial melting.The cordierite-rich leucosomes are formed—like the graniticones—at supersolidus conditions, but the role of partialmelting is not clear. The mesosomes are the metamorphic portions of the migmatiteswhich are not transformed into leucosomes. They include metapsammiticlayers and light-coloured metapelitic layers, both rich in plagioclase. Besides mineral reactions resulting in new assemblages duringregional metamorphism, the main process changing the protolithsinto migmatites is the conversion of some of the protolith layersinto leucosomes, through (as we believe) an almost isochemicalpartial melting. The migmatites of the Rantasalmi-Sulkava area differ from othermigmatites investigated by the authors in having two differentgenetic types of leucosomes: one formed via partial meltingand the other through subsolidus recrystallization as mentionedabove. The process of migmatization is described and modelledin three steps. Reprint requests to W. Johannes  相似文献   

20.
凤凰关地区出露的大别杂岩的混合岩中,至少有30种构造和侵入活动事件,使其构造面貌显得特别复杂。褶皱形式从等斜的片内褶皱、与韧性剪切带紧密伴生的构造到脆性剪切带、尖棱褶皱、开阔褶皱和平缓的弯曲,且大多褶皱都伴有矿物生长以及平行或近平行其轴面或一个翼的淡色脉体的贯入。有些褶皱发育很好的平行枢纽的粗线理,有些褶皱伴生劈理构造。很多长英质新成脉体是谐和的或大体上谐和的,而在韧性剪切带内的淡色脉体则与某些褶皱的轴面平行。根据构造叠加基本原理,可以利用构造间的相互关系来确定变形序列。文中依次描述了各种构造要素,阐述了用于揭示前寒武纪结晶杂岩地质历史的基本野外方法。此外,推测大别杂岩内相继形成的构造是所研究的该部份地壳在一个右行剪切带内遭受连续剪切应变形成的,这个剪切带似乎代表了一个与地体或板块边界平行的带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号