首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for daily maxima than minima. RCMs qualitatively reproduce these relationships. Effects of the driving model biases were found on RCMs’ performance in reproducing not only atmospheric circulation but also the links to surface temperature. However, the RCM formulation appears to be more important than the driving data in representing the latter. Differences of the circulation-to-temperature links among the RCA simulations are smaller and the links tend to be more realistic compared to the driving GCMs.  相似文献   

2.
3.
A regional climate model, the Weather Research and Forecasting (WRF) Model, is forced with increased atmospheric CO2 and anomalous SSTs and lateral boundary conditions derived from nine coupled atmosphere–ocean general circulation models to produce an ensemble set of nine future climate simulations for northern Africa at the end of the twenty-first century. A well validated control simulation, agreement among ensemble members, and a physical understanding of the future climate change enhance confidence in the predictions. The regional model ensembles produce consistent precipitation projections over much of northern tropical Africa. A moisture budget analysis is used to identify the circulation changes that support future precipitation anomalies. The projected midsummer drought over the Guinean Coast region is related partly to weakened monsoon flow. Since the rainfall maximum demonstrates a southward bias in the control simulation in July–August, this may be indicative of future summer drying over the Sahel. Wetter conditions in late summer over the Sahel are associated with enhanced moisture transport by the West African westerly jet, a strengthening of the jet itself, and moisture transport from the Mediterranean. Severe drought in East Africa during August and September is accompanied by a weakened Indian monsoon and Somali jet. Simulations with projected and idealized SST forcing suggest that overall SST warming in part supports this regional model ensemble agreement, although changes in SST gradients are important over West Africa in spring and fall. Simulations which isolate the role of individual climate forcings suggest that the spatial distribution of the rainfall predictions is controlled by the anomalous SST and lateral boundary conditions, while CO2 forcing within the regional model domain plays an important secondary role and generally produces wetter conditions.  相似文献   

4.
Simulation of South American wintertime climate with a nesting system   总被引:1,自引:1,他引:1  
A numerical nesting system is developed to simulate wintertime climate of the eastern South Pacific-South America-western South Atlantic region, and preliminary results are presented. The nesting system consists of a large-scale global atmospheric general circulation model (GCM) and a regional climate model (RCM). The latter is driven at its boundaries by the GCM. The particularity of this nesting system is that the GCM itself has a variable horizontal resolution (stretched grid). Our main purpose is to assess the plausibility of such a technique to improve climate representation over South America. In order to evaluate how this nesting system represents the main features of the regional circulation, several mean fields have been analyzed. The global model, despite its relatively low resolution, could simulate reasonably well the more significant large-scale circulation patterns. The use of the regional model often results in improvements, but not universally. Many of the systematic errors of the global model are also present in the regional model, although the biases tend to be rectified. Our preliminary results suggest that nesting technique is a computationally low-cost alternative for simulating regional climate features. However, additional simulations, parametrizations tuning and further diagnosis are clearly needed to represent local patterns more precisely. Received: 18 February 1999 / Accepted: 31 May 2000  相似文献   

5.
To enable downscaling of seasonal prediction and climate change scenarios, long-term baseline regional climatologies which employ global model forcing are needed for South America. As a first step in this process, this work examines climatological integrations with a regional climate model using a continental scale domain nested in both reanalysis data and multiple realizations of an atmospheric general circulation model (GCM). The analysis presents an evaluation of the nested model simulated large scale circulation, mean annual cycle and interannual variability which is compared against observational estimates and also with the driving GCM for the Northeast, Amazon, Monsoon and Southeast regions of South America. Results indicate that the regional climate model simulates the annual cycle of precipitation well in the Northeast region and Monsoon regions; it exhibits a dry bias during winter (July–September) in the Southeast, and simulates a semi-annual cycle with a dry bias in summer (December–February) in the Amazon region. There is little difference in the annual cycle between the GCM and renalyses driven simulations, however, substantial differences are seen in the interannual variability. Despite the biases in the annual cycle, the regional model captures much of the interannual variability observed in the Northeast, Southeast and Amazon regions. In the Monsoon region, where remote influences are weak, the regional model improves upon the GCM, though neither show substantial predictability. We conclude that in regions where remote influences are strong and the global model performs well it is difficult for the regional model to improve the large scale climatological features, indeed the regional model may degrade the simulation. Where remote forcing is weak and local processes dominate, there is some potential for the regional model to add value. This, however, will require improvments in physical parameterizations for high resolution tropical simulations.  相似文献   

6.
The Weather Regional Forecast (WRF) model is used in this study to downscale low-resolution data over West Africa. First, the performance of the regional model is estimated through contemporary period experiments (1981?C1990) forced by ARPEGE-CLIMAT GCM output (ARPEGE) and ERA-40 re-analyses. Key features of the West African monsoon circulation are reasonably well represented. WRF atmospheric dynamics and summer rainfall compare better to observations than ARPEGE forcing data. WRF simulated moisture transport over West Africa is also consistent in both structure and variability with re-analyses, emphasizing the substantial role played by the West African Monsoon (WAM) and African Easterly Jet (AEJ) flows. The statistical significance of potential climate changes for the A2 scenario between 2032 and 2041 is enhanced in the downscaling from ARPEGE by the regional experiments, with substantial rainfall increases over the Guinea Gulf and eastern Sahel. Future scenario WRF simulations are characterized by higher temperatures over the eastern Tropical Atlantic suggesting more evaporation available locally. This leads to increased moisture advection towards eastern regions of the Guinea Gulf where rainfall is enhanced through a strengthened WAM flow, supporting surface moisture convergence over West Africa. Warmer conditions over both the Mediterranean region and northeastern Sahel could also participate in enhancing moisture transport within the AEJ. The strengthening of the thermal gradient between the Sahara and Guinean regions, particularly pronounced north of 10°N, would support an intensification of the AEJ northwards, given the dependance of the jet to the position/intensity of the meridional gradient. In turn, mid-tropospheric moisture divergence tends to be favored within the AEJ region supporting southwards deflection of moist air and contributing to deep moist convection over the Sahel where late summer rainfall regimes are sustained in the context of the A2 scenario regional projections. In conclusion, WRF proved to be a valuable and efficient tool to help downscaling GCM projections over West Africa, and thus assessing issues such as water resources vulnerability locally.  相似文献   

7.
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.  相似文献   

8.
We investigate the performance of one stretched-grid atmospheric global model, five different regional climate models and a statistical downscaling technique in simulating 3 months (January 1971, November 1986, July 1996) characterized by anomalous climate conditions in the southern La Plata Basin. Models were driven by reanalysis (ERA-40). The analysis has emphasized on the simulation of the precipitation over land and has provided a quantification of the biases of and scatter between the different regional simulations. Most but not all dynamical models underpredict precipitation amounts in south eastern South America during the three periods. Results suggest that models have regime dependence, performing better for some conditions than others. The models’ ensemble and the statistical technique succeed in reproducing the overall observed frequency of daily precipitation for all periods. But most models tend to underestimate the frequency of dry days and overestimate the amount of light rainfall days. The number of events with strong or heavy precipitation tends to be under simulated by the models.  相似文献   

9.
Regional climate projections in the Pacific region are potentially sensitive to a range of existing model biases. This study examines the implications of coupled model biases on regional climate projections in the tropical western Pacific. Model biases appear in the simulation of the El Niño Southern Oscillation, the location and movement of the South Pacific Convergence Zone, rainfall patterns, and the mean state of the ocean–atmosphere system including the cold tongue bias and erroneous location of the edge of the Western Pacific warm pool. These biases are examined in the CMIP3 20th century climate models and used to provide some context to the uncertainty in interpretations of regional-scale climate projections for the 21st century. To demonstrate, we provide examples for two island nations that are located in different climate zones and so are affected by different biases: Nauru and Palau. We discuss some of the common approaches to analyze climate projections and whether they are effective in reducing the effect of model biases. These approaches include model selection, calculating multi model means, downscaling and bias correcting.  相似文献   

10.
区域海气耦合模式是研究局地海气相互作用过程影响气候变率的重要平台,也是对全球气候模式进行"动力降尺度"的重要工具.本文介绍了LASG(State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics)/IAP(Institute of Atmospheric Physics)发展的区域海气耦合模式FROALS(Flexible Regional Ocean-Atmosphere-Land System model),并总结了过去五年围绕该区域海气耦合模式开展的研究工 作.FROALS的特点之一是有两个完全不同的大气模式分量和海洋模式分量选项,可以适应不同的模拟研究需 求.针对区域海气耦合模式在西北太平洋地区的模拟偏差,通过分步骤考察不同大气模式分量和不同海洋模式分量对模式模拟性能的影响,指出大气模式是导致区域海气耦合偏差的主要分量.通过改进对流触发的相对湿度阈值标准,有效地改善了此前区域海气耦合模式在亚洲季风区普遍出现的"模拟海温冷偏差".改进的FROALS对西北太平洋地区的大气和海洋环境有较好的模拟能力,合理地再现了西北太平洋地区表层洋流气候态和年际变率.较之非耦合模式,考虑区域海气耦合过程后,改进了东亚和南亚地区的降水和热带气旋潜势年际变率的模拟.最后,针对东亚—西北太平洋地区,利用FROALS对IAP/LASG全球气候模式模拟和预估的结果进行了动力降尺 度,得到了东亚区域50 km高分辨率区域气候变化信息.分析显示,FROALS模拟得到的东亚区域气候较之全球气候模式和非耦合区域气候模式结果具有明显的"增值",显示出区域海气耦合模式在该区域良好的应用前景.  相似文献   

11.
The relationship between atmospheric blocking over Europe and the Atlantic eddy-driven jet stream is investigated in the NCEP/NCAR Reanalysis and in a climate model. This is carried out using a bidimensional blocking index based on geopotential height and a diagnostic providing daily latitudinal position and strength of the jet stream. It is shown that European Blocking (EB) is not decoupled from the jet stream but it is mainly associated with its poleward displacements. Moreover, the whole blocking area placed on the equatorward side of the jet stream, broadly ranging from Azores up to Scandinavia, emerges as associated with poleward jet displacements. The diagnostics are hence applied to two different climate model simulations in order to evaluate the biases in the jet stream and in the blocking representation. This analysis highlights large underestimation of EB, typical feature of general circulation models. Interestingly, observed blocking and jet biases over the Euro-Atlantic area are consistent with the blocking-jet relationship observed in the NCEP/NCAR Reanalysis. Finally, the importance of sea surface temperatures (SSTs) is investigated showing that realistic SSTs can reduce the bias in the jet stream variability but not in the frequency of EB. We conclude highlighting that blocking-related diagnostics can provide more information about the Euro-Atlantic variability than diagnostics simply based on the Atlantic jet stream.  相似文献   

12.
Coupled Model Inter-comparison Project Phase 5 (CMIP5) model outputs of the South and East Asian summer monsoon variability and their tele-connections are investigated using historical simulations (1861-2005) and future projections under the RCP4.5 scenario (2006-2100). Detailed analyses are performed using nine models having better representation of the recent monsoon teleconnections for the interactive Asian monsoon sub-systems. However, these models underestimate rainfall mainly over South Asia and Korea-Japan sector, the regions of heavy rainfall, along with a bias in location of rainfall maxima. Indeed, the simulation biases, underestimations of monsoon variability and teleconnections suggest further improvements for better representation of Asian monsoon in the climate models. Interestingly, the performance of Australian Community Climate and Earth System Simulator version 1.0 (ACCESS1.0) in simulating the annual cycle, spatial pattern of rainfall and multi-decadal variations of summer monsoon rainfall over South and East Asia appears to more realistic. In spite of large spread among the CMIP5 models, historical simulations as well as future projections of summer monsoon rainfall indicate multi-decadal variability. These rainfall variations, displaying certain epochs of more rainfall over South Asia than over East Asia and vice versa, suggest an oscillatory behaviour. Teleconnections between South and East Asian monsoon rainfall also exhibit a multi-decadal variation with alternate epochs of strengthening and weakening relationship. Furthermore, large-scale circulation features such as South Asian monsoon trough and north Pacific subtropical high depict zonal oscillatory behaviour with east-west-east shifts. Periods with eastward or westward extension of the Mascarene High, intensification and expansion of the upper tropospheric South Asian High are also projected by the CMIP5 models.  相似文献   

13.
The complex topography and high climatic variability of the North Western Mediterranean Basin (NWMB) require a detailed assessment of climate change projections at high resolution. ECHAM5/MPIOM global climate projections for mid-21st century and three different emission scenarios are downscaled at 10 km resolution over the NWMB, using the WRF-ARW regional model. High resolution improves the spatial distribution of temperature and precipitation climatologies, with Pearson's correlation against observation being higher for WRF-ARW (0.98 for temperature and 0.81 for precipitation) when compared to the ERA40 reanalysis (0.69 and 0.53, respectively). However, downscaled results slightly underestimate mean temperature (≈1.3 K) and overestimate the precipitation field (≈400 mm/year). Temperature is expected to raise in the NWMB in all considered scenarios (up to 1.4 K for the annual mean), and particularly during summertime and at high altitude areas. Annual mean precipitation is likely to decrease (around ?5 % to ?13 % for the most extreme scenarios). The climate signal for seasonal precipitation is not so clear, as it is highly influenced by the driving GCM simulation. All scenarios suggest statistically significant decreases of precipitation for mountain ranges in winter and autumn. High resolution simulations of regional climate are potentially useful to decision makers. Nevertheless, uncertainties related to seasonal precipitation projections still persist and have to be addressed.  相似文献   

14.
This study aims at (1) exploring dominant atmospheric dynamical processes which are responsible for climate model-simulated land-use impacts on Asian monsoon; and (2) assessing uncertainty in such model simulations due to their skills in simulating detailed monsoon circulations in the region. Firstly, results from a series of the Australian Bureau of Meteorology Research Centre (BMRC) global model simulations of land-use vegetation changes (LUC) in China are analysed. The model showed consistent signals of changes in atmospheric low-level vertical profile and regional circulations responding to LUC. In northern winter, the model-simulated rainfall reduction and surface cooling are associated with an enhanced southward penetration of dry and cold air mass, which impedes warm and humid air reaching the region for generating cold-front rainfall. In its summer, an enhanced cyclonic circulation responding to LUC further blocks the northeast penetration of southwestly summer monsoon flow into the region and results in rainfall decreases and a surface warming. Secondly, we have explored uncertainties in the proposed mechanism operating in the global model. By comparing its results with a set of high-resolution regional model simulations using the same vegetation datasets, it reveals similar changes in winter rainfall but opposite features in summer rainfall responses. In the global model, there is a cyclonic low-level circulation pattern over the South China Sea and adjacent region, an unsatisfactory feature commonly seen in other global climate models. With the reduction in surface roughness following LUC, such a deficiency becomes more prominent which further results in a weakened south/southwestly summer monsoon flow and rainfall reduction. In contrast, in the regional model, its southwestly summer monsoon flow is further enhanced due to the same process as reduced surface roughness. The enhanced monsoon flow further pushes the East Asian monsoon rainfall belt more northward and increases summer rainfall in the Yangtze River region. This study highlights the need for better monsoon simulations in climate models to produce reliable climate change projections in the region.  相似文献   

15.
The ability of state-of-the-art climate models to capture the mean spatial and temporal characteristics of daily intense rainfall events over Africa is evaluated by analyzing regional climate model (RCM) simulations at 90- and 30-km along with output from four atmospheric general circulation models (AGCMs) and coupled atmosphere–ocean general circulation models (AOGCMs) of the Climate Model Intercomparison Project 5. Daily intense rainfall events are extracted at grid point scale using a 95th percentile threshold approach applied to all rainy days (i.e., daily rainfall ≥1 mm day?1) over the 1998–2008 period for which two satellite-derived precipitation products are available. Both RCM simulations provide similar results. They accurately capture the spatial and temporal characteristics of intense events, while they tend to overestimate their number and underestimate their intensity. The skill of AGCMs and AOGCMs is generally similar over the African continent and similar to previous global climate model generations. The majority of the AGCMs and AOGCMs greatly overestimate the frequency of intense events, particularly in the tropics, generally fail at simulating the observed intensity, and systematically overestimate their spatial coverage. The RCM performs at least as well as the most accurate global climate model, demonstrating a clear added value to general circulation model simulations and the usefulness of regional modeling for investigating the physics leading to intense events and their change under global warming.  相似文献   

16.
The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.  相似文献   

17.
We assess the depiction and prediction of blocking at 140°E and its impact on Australian intra-seasonal climate variability in the Bureau of Meteorology’s dynamical intra-seasonal/seasonal forecast model Predictive Ocean Atmosphere Model for Australia version 2 (POAMA-2). The model simulates well the strong seasonality of blocking but underestimates its strength and frequency increasingly with lead time, particularly after the first fortnight of the hindcast, in connection with the model’s drifting basic state. POAMA-2 reproduces well the large-scale structure of weekly-mean blocking anomalies and associated rainfall anomalies over Australia; the depiction of total blocking in POAMA-2 may be improved with the reduction of biases in the distribution of Indian Ocean rainfall via a tropical-extratropical wave teleconnection linking blocking activity at 140°E with tropical variability near Indonesia. POAMA-2 demonstrates the ability to skilfully predict the daily blocking index out to 16 days lead time for the ensemble mean hindcast, surpassing the average predictive skill of the individual hindcast members (5 days), the skill obtained from persistence of observed (2 days), and the decorrelation timescale of blocking (3 days). This skilful prediction of the blocking index, together with effective simulation of blocking rainfall anomalies, translates into higher skill in forecasting rainfall in weeks 2 and 3 over much of Australia when blocking is high at the initial time of the hindcast, compared to when the blocking index is small. POAMA-2 is thus capable of providing forecast skill for blocking rainfall on the intra-seasonal timescale to meet the needs of Australian farming communities, whose management practises often rely upon decisions being made a few weeks ahead.  相似文献   

18.
A methodology is presented for providing projections of absolute future values of extreme weather events that takes into account key uncertainties in predicting future climate. This is achieved by characterising both observed and modelled extremes with a single form of non-stationary extreme value (EV) distribution that depends on global mean temperature and which includes terms that account for model bias. Such a distribution allows the prediction of future “observed” extremes for any period in the twenty-first century. Uncertainty in modelling future climate, arising from a wide range of atmospheric, oceanic, sulphur cycle and carbon cycle processes, is accounted for by using probabilistic distributions of future global temperature and EV parameters. These distributions are generated by Bayesian sampling of emulators with samples weighted by their likelihood with respect to a set of observational constraints. The emulators are trained on a large perturbed parameter ensemble of global simulations of the recent past, and the equilibrium response to doubled CO2. Emulated global EV parameters are converted to the relevant regional scale through downscaling relationships derived from a smaller perturbed parameter regional climate model ensemble. The simultaneous fitting of the EV model to regional model data and observations allows the characterisation of how observed extremes may change in the future irrespective of biases that may be present in the regional models simulation of the recent past climate. The clearest impact of a parameter perturbation in this ensemble was found to be the depth to which plants can access water. Members with shallow soils tend to be biased hot and dry in summer for the observational period. These biases also appear to have an impact on the potential future response for summer temperatures with some members with shallow soils having increases for extremes that reduce with extreme severity. We apply this methodology for London, using the A1B future emissions scenario to obtain projections of the 50 year return values for the 20 year period centred on 2050. We obtain 10th to 90th percentile ranges of 35.9–42.1 °C for summer daily maximum temperature, 35.5–52.4 mm for summer daily rainfall and 79.2, 97.0 mm for autumn 5 day total rainfall, compared to observed estimates for 1961–1990 of 35.7 °C, 42.1 and 78.4 mm respectively.  相似文献   

19.
嵌套域大小对区域气候模式模拟效果的影响   总被引:3,自引:3,他引:3  
This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is su perior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also,simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our PσRCM can do a good job in describing the plateau′s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our PσRCM nesting upon a GCM reaches morerealistic results compared to a single GCM used.  相似文献   

20.
This study aims at sharpening the existing knowledge of expected seasonal mean climate change and its uncertainty over Europe for the two key climate variables air temperature and precipitation amount until the mid-twentyfirst century. For this purpose, we assess and compensate the global climate model (GCM) sampling bias of the ENSEMBLES regional climate model (RCM) projections by combining them with the full set of the CMIP3 GCM ensemble. We first apply a cross-validation in order to assess the skill of different statistical data reconstruction methods in reproducing ensemble mean and standard deviation. We then select the most appropriate reconstruction method in order to fill the missing values of the ENSEMBLES simulation matrix and further extend the matrix by all available CMIP3 GCM simulations forced by the A1B emission scenario. Cross-validation identifies a randomized scaling approach as superior in reconstructing the ensemble spread. Errors in ensemble mean and standard deviation are mostly less than 0.1 K and 1.0 % for air temperature and precipitation amount, respectively. Reconstruction of the missing values reveals that expected seasonal mean climate change of the ENSEMBLES RCM projections is not significantly biased and that the associated uncertainty is not underestimated due to sampling of only a few driving GCMs. In contrast, the spread of the extended simulation matrix is partly significantly lower, sharpening our knowledge about future climate change over Europe by reducing uncertainty in some regions. Furthermore, this study gives substantial weight to recent climate change impact studies based on the ENSEMBLES projections, since it confirms the robustness of the climate forcing of these studies concerning GCM sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号