首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The main aim of this study was to estimate the influence of the seasonal variations of the Danube River particulate organic matter (POM) inputs on the Black Sea surface seawater POM and upper layer of sediments along the Romanian coast. Ratios of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotopes allowed differentiating river and marine organic matter sources. Danube River POM presented significantly lower average values of delta(13)C (-27.52+/-0.88 per thousand) and delta(15)N (4.88+/-1.45 per thousand) than seawater POM (delta(13)C=-24.70+/-2.37 per thousand and delta(15)N=6.75+/-1.96 per thousand), whereas surface sediment presented average values similar to seawater POM (delta(13)C=-24.02+/-2.39 per thousand and delta(15)N=7.29+/-2.16 per thousand). Stable isotope values showed that the Danube River influence on marine ecosystems decreased from the North to the South of the Romanian coast. Strong seasonal variations of C and N isotopic signatures were observed in all compartments studied with generally higher values in spring when the river was flooding.  相似文献   

3.
Elemental (carbon and nitrogen) ratios and stable carbon and nitrogen isotope ratios (δ13C and δ15N) are examined in sediments and suspended particulate matter from Hudson Bay to study the influence of river inputs and autochthonous production on organic matter distribution. River-derived particulate organic matter (POM) is heterogeneous, nitrogen-poor and isotopically depleted, consistent with expectations for OM derived from terrestrial C3 vascular plant sources, and distinct from marine OM sources. Both δ13C and C/N source signatures seem to be transmitted to sediments with little or no modification, therefore making good tracers for terrigenous OM in Hudson Bay. They suggest progressively larger contributions from marine sources with distance from shore and secondarily from south to north, which broadly corresponds to the distribution of river inputs to Hudson Bay. Processes other than mixing of marine and terrigenous OM influence sedimentary δ15N values, including variability in the δ15N of phytoplankton in the Bay's surface waters due to differences in relative nitrate utilization, and post-production processes, which bring about an apparently constant 15N-enrichment between surface waters and underlying sediments. Variability in the δ15N of phytoplankton in the Bay's surface waters, in contrast, seems to be organized spatially with a pattern that suggests an inshore–offshore difference in surface water nitrogen conditions (open- vs. closed-system) and hence the δ15N value of phytoplankton. The δ15N patterns, supported by a simple nitrate box-model budget, suggest that in inshore regions of Hudson Bay, upwelling of deep, nutrient-rich waters replenishes surface nitrate, resulting in ‘open system’ conditions which tend to maintain nitrate δ15N at low and constant values, and these values are reflected in the sinking detritus. River inflow, which is constrained to inshore regions of Hudson Bay, appears to be a relatively minor source of nitrate compared to upwelling of deep waters. However, river inflow may contribute indirectly to enhanced inshore nutrient supply by supporting large-scale estuarine circulation and consequently entrainment and upwelling of deep water in this area. In contrast to previous proposals that Hudson Bay is oligotrophic because it receives too much fresh water (Dunbar, 1993), our results support most of the primary production being organized around the margin of the Bay, where river flow is constrained.  相似文献   

4.
The spatial-temporal variations in the amount and biochemical composition of organic matter and the rates of its transformations in the ecosystems of the Russian part of the Sea of Azov are analyzed. Maximum OM concentrations are typical for Taganrog Bay. A characteristic feature of the Sea of Azov is a large proportion of particulate organic matter, which in summer in Taganrog Bay exceeded 35%. It is shown that not only the concentration of organic matter changes from season to season, but also its elementary (Corg, Norg, and Porg) and biochemical composition (proteins, carbohydrates, and lipids). The major biochemical compound of dissolved organic matter is shown to be carbohydrates (13–28%), and that of particulate matter is protein (44–51%). The hydrolytic (phosphatase and protease) and oxidation-reduction enzymes of electron-transport system demonstrate a high activity in summer. The estimated short turnover times of phosphates and protein suggest the rapid and complete utilization of organic matter in the Sea of Azov.  相似文献   

5.
Organic matter (OM) such as organic nitrogen plays a substantial role in the global biogeochemical cycling of bio‐reactive components—amino acids (AA) in aquatic environments. Spatial and temporal variations in source, diagenesis, and fate of organic nitrogen such as AA in sediments of small tropical rivers and the role of oxbow/meandering loops under changing climatic conditions are poorly investigated. This study assessed the spatial and seasonal variations in OM composition, source, and diagenesis of a tropical small mountainous river—Netravati River, India, for 1 year. Water samples were determined for suspended particulate matter, and surface sediments were examined for bulk parameters, surface area (SA), and the L‐ and D‐enantiomers of AA. The L‐ and D‐enantiomers of AA displayed subtle seasonal variations in composition and depicted varying degrees of diagenesis. The concentration of D‐enantiomer of AA was high and showed substantial contributions from bacteria, terrestrial source, and in situ production. The D‐arginine was the most abundant D‐enantiomer of AA in the study area, possibly due to extracellular secretion by bacterial species and adsorption onto sediments, and thus, it was protected from degradation. Degradation index was more negative at the oxbow and meandering loop stations during the dry season suggesting that local geomorphologic settings steer the diagenesis of OM within the river. A negative relationship between gamma‐aminobutyric acid and organic carbon:surface area (OC:SA) ratio and a positive correlation between tyrosine and OC:SA ratio suggested accelerated loss of OM. Furthermore, the concentrations of most bulk parameters were higher in the lower reaches during monsoon and premonsoon seasons. Taken together, changes in seasons have an operational control in distinguishing the composition, source, and diagenesis of spatial OM distribution. Moreover, oxbows and river meandering loops influence the diagenetic processes in small tropical river systems.  相似文献   

6.
This study aimed to understand changes in the biogeochemical processing of organic matter (OM) in response to multiple stressors (e.g., littoral area expansion, wastewater input, and hydrological regulation) in East Dongting Lake (Central China) over the past 60 years, using analyses of total organic carbon (TOC), total nitrogen (TN), C/N ratios, δ13C, δ15N, and diatoms from 2 sediment cores collected from the littoral and central parts of the lake. OM mainly originated from phytoplankton and C3 plant‐derived soil OM based on the ranges of C/N ratios (from 7 to 11) and δ13C (between ?27‰ and ?23‰). Littoral area expansion due to siltation caused an increasing influx of terrestrial soil OM in the 1980s and the 1990s, subsequently lowering δ13C values and rising C/N ratios in both sediment cores. Meanwhile, higher δ15N was linked to a high influx of isotopically heavy nitrate from urban and agricultural wastewaters. After 2000, slight decreases in TOC and TN in the littoral area were attributable to reducing inputs of external OM, likely linked to declining sediment influx from the upper reaches resulting from the Three Gorges Dam impoundment. Contrasting increases in TOC, TN, and C/N ratios in the central part indicated a high influx of terrestrial soil OM due to the declining distance from the shoreline with littoral area expansion. Declining δ15N values after 2000 indicated an increase in N2‐fixing cyanobacteria with eutrophication. Changes in diatom assemblages in both the littoral and central zones reflected nutrient enrichment and hydrological alterations. These results indicate that littoral expansion, declining riverine influx, and anthropogenic nutrient inputs are potential driving forces for the biogeochemical processing of OM in floodplain lakes. This study provides sedimentary biogeochemical clues for tracking past limnological conditions of floodplain lakes that are subjected to increasing disturbances from hydrological regulation and eutrophication.  相似文献   

7.
A close negative correlation was found to exist between oxygen concentration in winter and the latitude in rivers in the basins of the Ob and Volga. This can be explained by an increase in the duration of the freeze-up period (during which oxygen is consumed for oxidation of organic matter (OM) in water and bottom sediments) in the direction from the south to the north, while the input from oxygen from the atmosphere and photosynthesis is practically zero. No inverse relationship was found to exist between dissolved oxygen and the latitude, because in rivers of mountain and semimountain types, typical of this basin, organic matter (OM) does not accumulate in bottom sediments and the conditions of atmospheric circulation are better than in lowland rivers. The magnitude of seasonal variations in oxygen in lowland rivers is greater than in mountain ones because of an abrupt drop in oxygen concentration in slowly flowing rivers in winter and the saturation of their water by oxygen from photosynthesis in summer.  相似文献   

8.
In this paper, Lake Taihu, a large shallow freshwater lake in China, is chosen as an example of reconstruction of eutrophication through the comparison between stable isotopes from dissolved nutrients and plants and water column nutrient parameters and integration of multiple proxies in a sediment core from Meiliang Bay including TN, TP, TOC, C/N,δ15N,δ13C, etc. Differences in aquatic plant species and trophic status between East Taihu Bay and Meiliang Bay are indicated by their variations inδ13C andδ15N of aquatic plants andδ15N of NH4 . A significant influence of external nutrient inputs on Meiliang Bay is reflected in temporal changes inδ15N of NH4 and hydro-environmental parameters. The synchronous change betweenδ13C andδ15N values of sedi-mented organic matter (OM) has been attributed to elevated primary production at the beginning of eutrophication between 1950 and 1990, then recent inverse correlation between them has been caused by the uptake of 15N-enriched inorganic nitrogen by phytoplankton grown under eutrophication and subsequent OM decomposition and denitrification in surface sediments, indicating that the lake has suffered from progressive eutrophication since 1990. Based on the use of a combination of stable isotopes and elemental geochemistry, the eutrophication of Meiliang Bay in Lake Taihu could be better traced. These transitions of the lake eutrophication respectively occurring in the 1950s and 1990s have been suggested as a reflection of growing impacts of human activities, which is coincident with the instrumental data.  相似文献   

9.
湖泊沉积有机碳同位素与环境变化的研究进展   总被引:22,自引:2,他引:20  
湖泊沉积有机质稳定碳同位素(δ^13Corg)在区域气候与环境变化方面的应用近年来发展迅速,成果令人瞩目,保存在各类湖泊岩芯中的δ^13Corg记录揭示了晚更新世以来大气CO2浓度的变化、湖泊水位波动、湖区生态与植被的变迁以及气温变化等重要环境信息,由于造成δ^13Corg值变化的影响因素较多,确定个湖与环境变化有关的主导因素时常有赖于其它证据的帮助,诸如地球化学、古湖沼学、孢粉学、分子同位素地层学等等,前人通过研究来自不同类型湖泊、具不同曲线形态特征的δ^13Corg记录,提出了多种环境解释模型,本文对此作了归纳和评述。鉴别和澄清湖泊沉积有机质的源物质以及有机物源随环境变化而发生过的变化,是研究δ^13Corg记录环境意义至关重要的基础性工作,由于有机质含量、碳氮比值、氢指数、生物残留物鉴别等常能提供有关有关湖泊有机质来源、产率、成岩作用等方面的有用信息,这方面的研究结果应该尽可能一并提供,以利于恰当地应用现有的环境解释模型,或者建立个湖新模型,单体生物标志化合物鉴别通常也能为区分湖积有机质中陆生、水生、细菌生等不同碳的来源提供有用信息,特定化合物同位素分析技术近年来成功地应用于建立单体生物标志化合物碳同位素地层学,为湖积有机碳同位素在生态环境演变研究方面的应用提供了思路,我国许多湖泊的湖底沉积岩芯尚未钻取,那些对过去全球变化研究有价值的δ^13Corg记录有待我们去获取和研究。  相似文献   

10.
郑利  徐小清 《湖泊科学》2003,15(3):245-251
提要沉积物中酸挥发性硫化物(AVS)是硫化物的生成、氧化和扩散等综合作用的反映,有机物的供给、硫酸盐的还原等因素都能影响其分布特征。本文对武汉东湖三个污染程度不同站点的AVS深度分布特征进行了研究,结果表明,AVS含量在一定深度沉积物中具有最大值,东湖沉积物中AVS的深度分布具有两种不同的模式,Ⅰ站和Ⅱ站AVS浓度峰在5cm左右的表层沉积物中,且AVS还原层深度较狭窄,而Ⅲ站AVS浓度峰处于10-20cm深度范围,沉积物中有机质负荷的差异是导致这种分布特征的重要原因。沉积物中有机质含量对AVS的深度分布具有重要影响,高有机质负荷导致AVS浓度峰向表层迁移,且AVS还原层分布于较狭窄的深度范围,对方涛等对流-扩散模型的应用表明,该模型在高有机质负荷沉积物中(Ⅰ、Ⅱ站)AVS深度分布的应用较为理想,然而低有机质负荷沉积物中(Ⅲ站)不能准确反映AVS的深度分布特征,说明其应用范围具有一定的局限性。  相似文献   

11.
In order to assess the impact of natural and anthropogenic sediment resuspension on quantity, biochemical composition and bioavailability of particulate organic matter (POM), two field investigations were carried out in two shallow coastal areas of the Mediterranean Sea. In the Gulf of Lions, we investigated the impact of a storm resuspension of sediment, whereas in the Thermaikos Gulf we investigated the impact of bottom trawling.Resuspension in the Gulf of Lions determined the increase of sedimentation rates, modified the composition of the organic fraction of settling particles and decreased the labile fraction of POM, as indicated by a drop in the enzymatically hydrolysable amino acid fraction. The increase in the refractory fraction, following short-term storm-induced resuspension, increased also the contribution of glycine and decreased the contribution of aspartic acid contents to the total amino acid pools.Trawling activities in Thermaikos Gulf determined a significant increase in suspended POM concentrations and important changes in its biochemical composition. After trawling, the protein to carbohydrate ratio decreased (as a result of a major input of sedimentary carbohydrates at the water–sediment interface) and the fraction of enzymatically hydrolysable biopolymeric C decreased by ≈30%, thus reducing the bioavailability of resuspended organic particles. Results of the present study indicate that changes in suspended POM, induced by storms and trawling activities, can have similar consequences on benthic systems and on food webs. In fact, the potential benefit of increased organic particle concentration for suspension feeders, is depressed by the shift of suspended food particles towards a more refractory composition.  相似文献   

12.
Fei YH  Li XD  Li XY 《Marine pollution bulletin》2011,63(5-12):578-582
Hydrophobic organic contaminants in marine water are mostly adsorbed onto (partitioned into) sediment organic matter (SOM). To study the impact of SOM diagenesis on sediment adsorption properties, artificial sediment with rich SOM content was incubated for more than 120 days. The sediment was sampled every week, and batch sediment adsorption tests were conducted with bisphenol A (BPA) and nonylphenol (NP) as the model pollutants. The results show that the amount of organic matter loaded in the sediment decreased by nearly 80% during incubation. For the incubated sediment, the BPA partition coefficient, Kd, decreased whereas the organic normalized partition coefficient, Koc, more than doubled. The experiments with NP show an even greater increase in Koc. Organic matter diagenesis shows a profound effect on the adsorption behavior of sediment, as the SOM residue has an increasing affinity and partition capacity for organic contaminants.  相似文献   

13.
Mechanical and biological processing in aquatic systems converts coarse particulate organic matter (CPOM) into fine particulate organic matter (FPOM). Other sources of particles with different size classes include flocculated dissolved matter, algae and soil particles. The relative magnitudes of these inputs are influenced by the degree of allochthony of a lake or stream. The size-reactivity hypothesis, formulated for dissolved organic matter, postulates that bacterial degradation rates are higher with high-molecular-weight fractions than with low-molecular-weight fractions. In this study, we investigated the effect of particle size on degradation of POM and on freshwater bacterial communities. We generated leaf-derived particle size classes of the same age (same diagenesis status) but differing in quality (maple and beech leaves). Contrary to our expectations, we found a strong effect of particle size and no significant effect of substrate quality on community respiration which decreased at smaller particle size, on C:N ratios which declined with particle size, and on δ15 N which showed a decreasing trend (though not significant) at smaller particle size in beech leaves. By contrast, bacterial community structure and ∂13C values responded mainly to particle quality. Bacterial biomass, estimated by qPCR, was affected by complex interactions between particle size and quality. These findings open an unanticipated perspective on the size-reactivity hypothesis for particulate organic matter.  相似文献   

14.
Suspended particulate organic matter (POM) in headwater streams is an important source of food and energy to stream food webs. In order to determine the effects of watershed land use on the sources and characteristics of POM, we compared the lipid composition of POM (fatty acid, aliphatic alcohol and sterol) from streams influenced by different types of watershed land use. Eight first-order streams discharging to the York River Estuary (Virginia, USA) were sampled during baseflow conditions bi-monthly from February to November 2009, including streams draining forest-dominated, pasture-dominated, cropland-dominated, and urban land-dominated watersheds. Allochthonous vs. autochthonous lipids showed that POM in most of these streams was dominated by allochthonous sources (59.5 ± 14.2 vs. 39.6 ± 14.5 % for aliphatic alcohols and 52.9 ± 11.5 vs. 34.1 ± 10.3 % for sterols). The relative abundance of allochthonous vs. autochthonous lipid inputs to POM varied as a function of land use type. POM in streams draining forest-dominated watersheds contained a higher proportion of allochthonous lipids and a lower proportion of autochthonous lipids than the streams influenced by human land use. The contribution of bacterial fatty acids differed significantly among sampling times (P = 0.003), but not among land use types (P = 0.547). Stepwise linear regression model selected nitrate and temperature as the best predictors of variation in bacterial inputs to POM. Proxies used to assess the nutritional value of POM potentially available to stream consumers included C:N ratios, and the concentrations of total long-chain polyunsaturated fatty acids, eicosapentaenoic acid, arachidonic acid, and cholesterol. None of these nutritional proxies differed among sampling months (P ≥ 0.171), but the proxies showed that the nutritional value of POM in forest streams was lower than in urban streams. Collectively, these findings suggest that human land use in upstream watersheds alters the source composition and nutritional value of stream POM, which not only impacts food quality for stream biota, but also potentially changes the characteristics of OM reaching downstream ecosystems.  相似文献   

15.
Environmental parameters and gross sedimentation rates (GSR) were monitored at a fixed site located in the Bay of Banyuls-sur-Mer (NW Mediterranean), between March 1997 and April 1998, together with the main biochemical characteristics of both sedimenting and sedimented particulate organic matter (POM). Three storms which occurred during this time period resulted in natural sediment resuspension. This is indicated by the corresponding increase in GSR and a decrease in the enzymatically hydrolysable amino acids/totally hydrolysable amino acids ratio (EHAA/THAA), within the sedimenting POM. Only the strongest storm resulted in (1) a transitory increase in fine-grained particles, (2) concomitant increases in organic carbon, carbohydrates, lipids and THAA, and (3) a decrease in the EHAA/THAA ratio in surficial sediments. For most of the assayed parameters, the values recorded after the December 1997 storm corresponded to extremes for the whole period under study. This emphasises the role of storms in controlling the characteristics of sedimented and sedimenting POM.Ten sediment types, with contrasting biochemical characteristics, were selected for experiments; these were based on the results of the monitoring survey and were used during adsorption and absorption experiments involving 14C tetrachlorobiphenyl (TCB). Adsorption rates differed significantly between the sediment types, but did not correlate with any of the assayed biochemical parameters. Absorption efficiency by the mussel Mytilus galloprovincialis also differed between the sediment types; it correlated positively with all the assayed biochemical parameters, except lipids. Comparison between the magnitudes of the increase in GSR, together with the decrease in absorption efficiency during resuspension events, suggests that resuspension tends to enhance the transfer of organic pollutants in the benthic food chain.  相似文献   

16.
为深入理解纳木错湖水及入湖河流中溶解有机碳(DOC)和总氮(TN)浓度的季节变化特征及其影响因素,于2012-2013年不同季节对纳木错2个站点及流域内21条主要入湖河流进行采样及分析,采用统计学方法初步探讨纳木错水体和21条河流DOC和TN浓度季节变化特征.结果表明,河流DOC平均浓度范围为0.763~1.537 mg/L,TN平均浓度范围为0.179~0.387 mg/L.21条入湖河流DOC浓度在春末夏初和夏季达到高值,冬季为低值,TN浓度季节变化趋势大体上与DOC浓度相反.湖泊水体DOC和TN浓度范围分别为2.42~8.08和0.237~0.517 mg/L,明显分别高于河水中的浓度.湖泊DOC浓度季节变化趋势与河流一致,而TN浓度无明显的季节性变化.河水DOC浓度的季节变化和空间差异受控于河流的补给方式,湖水DOC浓度受湖泊内部藻类等水生植物活动和河流外源输入的影响.DOC等有机质的分解是影响纳木错流域湖水和河水TN浓度的重要原因.  相似文献   

17.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) in surface water and 63–200 μm-sized microphytoplankton collected at the fluorescence maximum were studied in four sites in the Gulf of Lions (NW Mediterranean), a marine area influenced by the Rhone River inputs, in May and November 2004. Some environmental (temperature, salinity) and biological (POM, Chlorophyll a and phaeopigments contents, phytoplankton biomass and composition) parameters were also analysed. Significantly different C and N isotopic signatures between surface water POM and microphytoplankton were recorded in all sites and seasons. Surface water POM presented systematically lower δ13C (∼4.2‰) and higher δ15N (∼2.8‰) values than those of microphytoplankton, due to a higher content of continental and detrital material. Seasonal variations were observed for all environmental and biological parameters, except salinity. Water temperature was lower in May than in November, the fluorescence maximum was located deeper and the Chlorophyll a content and the phytoplankton biomass were higher, along with low PON/Chl a ratio, corresponding to spring bloom conditions. At all sites and seasons, diatoms dominated the phytoplankton community in abundance, whereas dinoflagellate importance increased in autumn particularly in coastal sites. C and N isotopic signatures of phytoplankton did not vary with season. However, the δ15N of surface water POM was significantly higher in November than in May in all sites likely in relation to an increase in 15N/14N ratio of the Rhone River POM which influenced surface water in the Gulf of Lions. As it is important to determine true baseline values of primary producers for analysing marine food webs, this study demonstrated that C and N isotopic values of surface water POM cannot be used as phytoplankton proxy in coastal areas submitted to high river inputs.  相似文献   

18.
Ciliate composition and its seasonal changes in seston depending on the discharge regime were analyzed in the lower rhithral area of the river Sava. Higher values for ciliate density, dry biomass, index of species diversity and concentration of particulate organic matter (POM) were associated with discharge peaks. Using the power model: y = axb ± c a significant positive correlation was found between POM and ciliate dry biomass (as dependent variables) and discharge (as independent variable). The ciliate drift constitutes 0.78% of the total annual POM transport. Depending on the discharge regime, the composition of ciliate drift reflects the temporal and structural changes in periphytic community.  相似文献   

19.
The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan’s total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ15N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ15N and δ13C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes.  相似文献   

20.
Stable isotopic signatures (δ13C and δ15N) and C/N ratios of suspended particulate organic matter (POM) were investigated from the surface water of Daya Bay during summer and winter of 2015. The relatively high δ13CPOM values suggested the input of 13C-depleted terrigenous organic matter was low in Daya Bay. There were significant correlations between δ13CPOM values and chlorophyll a concentrations both during summer and winter, suggesting the δ13CPOM values were mainly controlled by the phytoplankton biomass in the surface water. The distribution of δ15NPOM values was more complicated than that of δ13CPOM and displayed low values in the outer bay and the Dan'ao River estuary. 15N-depleted ammonia originating from industrial wastewater might have strongly influenced the water quality and stable isotopic signatures of POM near the Dan'ao River estuary. The δ13CPOM and δ15NPOM values strongly reflect the influences of anthropogenic activity and eutrophication in Daya Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号