首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Long‐term effects of different forest management practices on landslide initiation and volume were analysed using a physically based slope stability model. The watershed‐based model calculates the effects of multiple harvesting entries on slope stability by accounting for the cumulative impacts of a prior vegetation removal on a more recent removal related to vegetation root strength and tree surcharge. Four sequential clearcuts and partial cuts with variable rotation lengths were simulated with or without leave areas and with or without understorey vegetation in a subwatershed of Carnation Creek, Vancouver Island, British Columbia. The combined in?nite slope and distributed hydrologic models used to calculate safety factor revealed that most of the simulated landslides were clustered within a 5 to 17 year period after initial harvesting in cases where suf?cient time (c. 50 years) lapsed prior to the next harvesting cycle. Partial cutting produced fewer landslides and reduced landslide volume by 1·4‐ to 1·6‐fold compared to clearcutting. Approximately the same total landslide volume was produced when 100 per cent of the site was initially clearcut compared to harvesting 20 per cent of the area in successive 10 year intervals; a similar ?nding was obtained for partial cutting. Vegetation leave areas were effective in reducing landsliding by 2‐ to 3‐fold. Retaining vigorous understorey vegetation also reduced landslide volume by 3·8‐ to 4·8‐fold. The combined management strategies of partial cutting, increasing rotation length, provision of leave areas, and retention of viable understorey vegetation offer the best alternative for minimizing landslide occurrence in managed forests. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
New detailed data about the morphology of the submerged slopes of Lake Albano (Rome, Italy) have been collected by a sonar multibeam survey financed by the Italian Department of Civil Protection. These data allow for investigation of the subaqueous slope dynamics of the lake, which partially fills a volcanic depression, and the elucidation of the relationships between subaqueous and subaerial slope processes. Subaerial, submerged and combined subaerial/submerged landslide‐related morphologies were detected around the inner slopes of the lake. In the submerged slopes, several gravity‐induced landforms were recognized: landslide scar areas, landslide accumulations, erosional chutes and channels, block fields, isolated blocks, scarps and slope breaks. An attempt to evaluate the state of activity of the submerged slopes was carried out by taking into consideration the relative freshness of some selected landforms. Interpretation of bathymetric data, as well as direct surveys of the subaerial slopes, was used to assess the morphometric features and interpret the type of movement of the landslides. We propose a comprehensive classification based on the landslide's size and type of movement. We recognized rock fall/topples, debris flows, rock slides and slump, complex rock slides/channelled flows and debris slide and slump. The volume of the main landslides ranged between 101 and 103 m3, while a few rock and debris slides have volumes ranging between 103 and 105 m3. Two large palaeo‐landslides with volumes on the order of 106 m3 were identified in the southern and northern part of the lake, respectively. Velocities of the recognized landslides range from rapid to extremely rapid. Two main landslide hazard scenarios have been depicted from the results of the integrated analysis of both subaerial and submerged gravity‐induced landforms. The most hazardous scenario involves extremely rapid large volume events (>106 m3) that could, if they interacted with water, induce catastrophic tsunamis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Landslides and runoff are dominant erosional agents in the tectonically active alpine South Westland area of New Zealand, characterized by high uplift rates and extreme orographic precipitation. Despite a high density of shallow debris slides and flows, the geomorphic imprints of deep‐seated bedrock failures are dominant and persistent. Over 50 large (>1 km2) landslides comprising rock slide[sol ]avalanches, complex rotational and rock‐block slides, wedge failures, and deep‐seated gravitational slope deformation were detected on air photos and shaded‐relief images. Major long‐term impacts on alpine rivers include (1) forced alluviation upstream of landslide dams, (2) occlusion of gorges and triggering of secondary riparian landslides, and (3) diversion of channels around deposits to form incised meandering gorges. Remnants of large prehistoric (i.e. pre‐1840) landslide deposits possibly represent the low‐frequency (in terms of total area affected yet dominant) end of the spectrum of mass wasting in the western Southern Alps. This is at odds with high erosion rates in an active erosional landscape. Large landslides appear to have dual roles of supplying and retaining sediment. The implications of these roles are that (1) previous models of (shallow) landslide‐derived sediment flux need to be recalibrated, and (2) geomorphic effects of earthquake‐induced landsliding may persist for at least 102 years. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
An inventory of 846 mass movements, mainly landslides, in two alpine regions of southwest New Zealand was created to explore the geomorphic impacts of slope‐failure processes on river channels and valley floors. In total, 213 (i.e. 27 per cent) of the slope failures descended to valley floors, affecting the geomorphology of trunk channels (catchment area AC > 10 km2) and valley floors in recurring patterns. A nominal classification system is introduced for characterizing (a) the physical contact nature between landslides and river channels, and (b) the resulting geomorphic consequences for drainage. Although landslide area A is useful for estimating the length of channel directly impacted by debris, it does not necessarily predict the direction of fluvial response or type of impact. Dominant persistent geomorphic imprints of bedrock landslides include channel occlusions and landslide dams in South Westland and Fiordland, respectively. Differences in size distribution and geomorphic effects on river systems between the two study regions are attributed to bedrock geology, tectonics and sediment flux. Although South Westland rivers are more frequently affected by landslides, disrupting long‐term effects such as blockage are more persistent in Fiordland. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
We examined the characteristics of landslides triggered by the 2016 Kumamoto earthquake (Mw = 7.0: focal depth=10.0 km) in forests and grasslands within two affected watersheds (Tokosegawa: 6.9 km2 and Nigorigawa: 6.1 km2) in southwestern Japan. We identified 190 landslides using aerial photographs and analyzed their sizes by geographic information system (GIS). Field investigations were conducted to obtain landslide depth, volume and residual sediment for 38 selected landslides (21 in forests and 17 in grasslands). The minimum area of detected landslides in grasslands (400 m2) was smaller than in forests (1000 m2), probably because of reduced detectability of landslides under tree cover. The ratio of total area occupied by landslides for a given range of slope gradient in the watersheds increased from 3.2% on gentle grassland slopes (10–15°) to 15.5% on steep (>45°) slopes, whereas the maximum landslide-area ratio in forest sites (7.4%) occurred on relatively gentle slopes (25–30°). Estimated landslide volume ranged from 27 to 9622 m3, based on mean depth of each landslide measured around individual landslide scars. Moreover, the volumetric ratio of landslide deposit volume to total landslide volume exceeded 100% for 48% of the landslides within forests and 35% of the landslides within grasslands. Our findings show that land cover had extensive and recognizable effects on the characteristics of landslides and resulting in-channel sediment accumulations. Resetting sediment dynamics after earthquakes associated with different land cover distributions needs to be considered within watersheds. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
M. Robinson  A. Dupeyrat 《水文研究》2005,19(6):1213-1226
This paper presents the first large‐scale British study of the impacts of commercial forest cutting on stream‐flow regimes. The 70% forested headwaters of the River Severn are part of the intensively instrumented long‐term Plynlimon catchment study into the impact of land use on stream flow. The forest area, comprising predominantly Sitka spruce (Picea sitchensis), was planted mainly in the 1930s and 1940s. Harvesting commenced in the mid‐1980s and over the study period about half the forest has been felled. Changes in annual water yield and extreme flows were studied in four nested catchments ranging in area from about 1 to 10 km2 and compared with an adjacent benchmark grassland catchment. As expected from earlier process studies the cutting of the forest increased total annual flows. Less expected was the clear evidence that the felling augmented low flows. This informs a long‐standing debate whether upland forestry increases or reduces baseflows. A particularly notable result was the lack of impact of the harvesting on storm peak flows. This may result from the application of forest management guidelines designed to reduce soil damage and erosion during the harvesting, and indicates that the forest itself has a limited impact on flooding. These findings are timely because British forest expansion peaked in the 30 years following the Second World War, and large areas of these woodlands are now approaching economic maturity and will be harvested in the next two decades. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study analyses the lake impact and the consequences, and the catchment response to the landslide. A quasi-3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly fluidized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and subaquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geomorphology. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

10.
The evolution of a debris‐flow cone depends on a multitude of factors in the hydrogeomorphic system. Investigations of debris‐flow history and cone dynamics in highly active catchments therefore require an integrative approach with a temporal and spatial resolution appropriate for the goals of the study. We present the use of an orthophoto time series to augment standard dendrogeomorphic techniques to describe the spatio‐temporal dynamics of debris flows on a highly active cone in the western Austrian Alps. Analysis of seven orthophotos since 1951 revealed a migration of active deposition areas with a resulting severe loss of forest cover (> 80%) and a mean tree loss per year of 10·4 (range 1·3–16·6 trees per year). Analysis of 193 Pinus mugo ssp. uncinata trees allowed the identification of 161 growth disturbances corresponding to 16 debris flows since 1839 and an average decadal frequency of 0·9 events. As a result of the severe loss of forest cover, we speculate that < 20% of the more recent events were actually captured in the tree‐ring record, giving a decadal return interval of ~7·5 events for a period of 60 years. Based on three annual field observations, it is evident that this catchment (the Bärenrüfe) produces very frequent (< 1 yr), small (in the order of a few 10 to 100 m3) debris flows with minor material relocation. The specific challenges of tree‐ring analysis in this tree species and in highly active environments are explicitly addressed in the discussion and underline the necessity of employing complementary methods of analysis in an integrative manner. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
An increase in debris-flow frequency is expected in steep Alpine catchments after the occurrence of a large landslide, such as a rock avalanche. Herein we describe changes in debris-flow activity following increases in sediment availability due to landslides, or accelerated rock-glacier movement, for five catchments in the Swiss Alps, the Spreitgraben, Schipfenbach, Bondasca, Riascio, and Dorfbach catchments. Documentation on debris-flow activity is available from both before and after the landslide that generated the new sediment deposits. Data from nearby meteorological stations were used to explore possible changes in rainfall activity, and how the intensity and duration of rainfall events may have changed. In all cases there was a considerable increase in debris-flows frequency for one to eight years following the landslide. The annual number of days with debris-flow activity following the landslide was similar to that observed for the Illgraben catchment, where many such landslides occur annually. No clear change in precipitation totals preceding debris flows was apparent for the Riascio catchment, suggesting that the increase in frequency of debris flows is related to the increase in the amount of sediment that can be readily mobilized. In the two cases where rainfall data were available on an hourly basis, no systematic changes in the intensity or duration of rainfall related to debris-flow triggering were apparent, as shown by the close-clustering of storms on the intensity-duration plots. Following the sediment-generating event, an initial and sudden increase of the sediment yield was observed, followed by a decrease over time towards pre-disturbance values. The response of the catchments appears to be related to the amount of debris-flow activity prior to the landslide: sediment yield from catchments with frequent debris flows prior to the landslide activity did not increase as dramatically as in catchments where debris-flow activity was less common prior to the landslide. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   

14.
—Sidescan sonar observations show that mass wasting plays an important role in the geologic development of the Savaii Island edifice. Observations on the south and west flanks indicate that debris movement on the submarine slopes between rift zones is characterized by large sheets of unchannelized debris. Farther downslope these sheets have slumped into folded although still relatively coherent slump sheets. Closer to the rift zones, more chaotic slumps are found. The presence of large detached landslide blocks, without obvious upslope headwall scarps, suggests that earlier slumps are covered by subsequent veneers of debris moving downslope.¶In contrast, on Stearns Bank west of the island of Savaii most of the features are of constructional origin, formed during the building of this volcanic edifice of unknown age. Two prominentsubmarine platforms are evident, the shallower one with a summit cone. Sea cliffs and subdued terraces record platforms cut by sea-level oscillations late in the history of the volcanic edifice. Fractures and fissures are present on the bank, however there is little evidence of landslides in this area. The absence of landslides may reflect differing ages of the bank and the island or the edifice could have remained submarine during its construction with few or no subaerially derived ashes and clays present to facilitate mass wasting.¶We conclude that mass wasting is an important influence on the evolution of the Savaii volcanic edifice. It appears that sediment and debris cover most of the slope outside the submarine rift zones. The sonar images indicate that mass wasting is a common process in the submarine environment. Unlike the giant landslides documented by GLORIA imagery around the Hawaiian Islands, the southern margin of Samoa is characterized by numerous small slumps and slides. Although we have little information at present regarding the recurrence interval for submarine landslides, their ubiquitous presence in these sidescan sonar records indicates that they are an important component of the geologic record of the Samoan Islands.  相似文献   

15.
The grass-covered slopes on the southern flank of Mt Thomas, an upfaulted block of highly sheared sandstone and argillite 40 km NW of Christchurch, New Zealand, are presently undergoing severe erosion by a combination of mass-wasting processes. Gully erosion, soil slips, and debris flows have carved out a number of steep, deeply incised ravines, from which coarse debris is transported (primarily by debris flows) to alluvial fans below. Geologic and historical evidence indicates that debris flows have been episodically active here for at least the last 20,000 years and have been the dominant process in fan building. This demonstrates that catastrophic geomorphic processes, rather than processes acting at relatively uniform rates, can be dominant in humid-temperate areas as well as in arid and semi-arid regions. In April 1978, debris flows were triggered in one of two unstable ravines in the Bullock Creek catchment by a moderate intensity, long duration rainstorm with a return period in excess of 20 years. Surges of fluid debris, moving at velocities up to 5 m/s, transported a dense slurry of gravel, sand, and mud up to 3·5 km over a vertical fall of 600 m. Deposition on the alluvial fan occurred when the flows left the confines of an entrenched fan-head channel and spread out as a 0·16 km2 sheet averaging 1·2 m thick. In all, 195,000 m3 were deposited, roughly a third of that being reworked sediments from the head of the fan. Sediment yield from this one event would be equivalent to several thousand years worth of erosion at average sediment discharge rates for small South Island mountain catchments. Samples of viscous fluid debris during surges contained up to 84 per cent solids, composed of 70 per cent gravel, 20 per cent silt, and 4 per cent clay. Fluid density of the material ranged between 1·95 and 2·13 g/cm3, and it was extremely poorly sorted. Between surges the fluid was less viscous, less dense, and unable to carry gravel in suspension. Severe fan-head entrenchment of the stream channel (approximately 10 m in less than 24 hours) was accomplished by the erosive action of the surges. Tectonic uplift of the Mt Thomas block and the weak, crushed condition of the bedrock appear to be ultimately responsible for the catastropic erosion of slopes in the Bullock Creek catchment. However, forest clearing within the last few centuries appears to have greatly increased the rate of mass wasting and gully erosion on these slopes.  相似文献   

16.
Soil erosion on steepland hillslopes in Taranaki, New Zealand, where landsliding is the dominant erosion form, was investigated by comparing mean regolith depths between first-order basins that have had their forest cover removed for different periods of time. Regolith depth and slope angle data were collected along 19 profile lines and 30 profile lines from steepland basins that had been deforested for 10 and 85 years, respectively. These profile lines were subdivided into a total of 236 profile segments of relatively linear slope angle and uniform regolith depth, that averaged 17·5 m in length. The depth of pre-existing regolith on post-deforestation landslide sites is estimated from a regression of regolith depth on slope angle for undisturbed (non-landslide) profile segments. Regolith depletion on landslide sites is in turn estimated by subtracting the depth of regolith on landslide sites from the estimate of pre-existing regolith depth. Regolith depletion by post-deforestation landslides, averaged over the entire length of profile lines, gives an estimate of average surface lowering. For the area deforested for 85 years, average surface lowering by post-deforestation landslides is 0·15 ± 0·04 m, and is the same as the difference in mean depth of 0·15 ± 0·11 m between this area and the area deforested for 10 years. Erosion of regolith from hillslopes by processes other than landsliding appears to be minimal. The 0·15 m average surface lowering represents a regolith depletion rate of 1·8 ± 0±5 mm yr?1. For hillslopes steeper than 28°, where all post-deforestation landslides occur, average surface lowering is 0·20 ± 0·05 m, and the regolith depletion rate is 2±4 · 0±6 mm yr?1. Average surface lowering is greatest at 0·23 ± 0·07 m on hillslopes steeper than 32° where most post-deforestation landslides occur. Here, the regolith depletion rate is 2·7 ± 0·8 mm yr?1. A large-magnitude, low-frequency storm in March 1990, produced an average surface lowering of 0·041 m. There were proportionately more landslides in the area deforested for 10 years, illustrating the importance of previous erosion history of hillslopes on the spatial distribution of landslides. There were also comparatively few landslides on steeper hillslopes because previous lower magnitude storms had already removed much of the deeper regolith.  相似文献   

17.
Distribution of Landslides in Baoshan City, Yunnan Province, China   总被引:1,自引:1,他引:0  
Using Google Earth software as a platform, this study has established an integrated database of both old and new landslides in Baoshan City, Yunnan Province, China, and analyzed their development characteristics together with distribution rules, respectively. Based on the results, a total of 2 427 landslides occurred in the study area, including 2 144 new landslides and 283 old landslides, with a total area of about 104.8 km2. The new landslides are mostly in small-scales with an area less than 10 000 m2, while the area of individual old landslide is mostly larger than 10 000 m2. By analyzing the relationship between the two types of landslides and eight impact factors (i.e., elevation, slope angle, slope aspect, slope position, lithology, fault, regional Peak Ground Acceleration (PGA), and average annual rainfall), the different individual influencing factors, distribution regularities and mechanisms of the two types of landslides are revealed. In detail, the main influencing factors of new landslides are elevation, slope angle, slope aspect, slope position, lithology, regional PGA and average annual rainfall, while the influencing factors of old landslides are mainly elevation, slope angle, and lithology. This study provides basic data and support for landslide assessment and further disaster reduction in Baoshan City. Besides, it also provides new constraints in deeply understanding the effect of different topographic and geological conditions, historical earthquakes, rainfall and other factors on the occurrence mechanisms of both new landslides and old landslides.  相似文献   

18.
The quantification of debris‐flow hazard requires estimates of debris‐flow frequency and magnitude. Several methods have been proposed to determine the probable volume of future debris flows from a given basin, but most have neglected to account for debris recharge rates over time, which may lead to underestimation of debris‐flow volumes in basins with rare debris flows. This paper deals with the determination of debris recharge rates in debris‐flow channels based on knowledge of debris storage and the elapsed time since the last debris flow. Data are obtained from coastal British Columbia and a relation is obtained across a sample of basins with similar terrain and climatic conditions. For Rennell Sound on the west coast of the Queen Charlotte Islands, the power‐law relation for area‐normalized recharge rate, Rt, versus elapsed time, te was Rt = 0·23te?0·58 with an explained variance of 75 per cent. A difference in recharge rates may exist between creeks in logged and unlogged forested terrain. The power function for undisturbed terrain was Rt = 0·20te?0·49, while the function for logged areas was Rt = 0·30te?0·77. This result suggests that for the same elapsed time since the last debris flow, clearcut gullies tend to recharge at a slower rate than creeks in old growth forest. This finding requires verification, particularly for longer elapsed times since debris flow, but would have important implications for forest resource management in steep coastal terrain. This study demonstrates that commonly used encounter probability equations are inappropriate for recharge‐limited debris flow channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Terrestrial cosmogenic nuclide concentrations in sediment are used to quantify mean denudation rates in catchments. This article explores the differences between the 10Be concentration in fine (sand) and in coarse (1–3 or 5–10 cm pebbles) river sediment. Sand and pebbles were sampled at four locations in the Huasco Valley, in the arid Chilean Andes. Sand has 10Be concentrations between 4.8 and 8.3·105 at g−1, while pebbles have smaller concentrations between 2.2 and 3.3·105 at g−1. It appears that the different concentrations, systematically measured between sand and pebbles, are the result of different denudation rates, linked with the geomorphologic processes that originated them. We propose that the 10Be concentrations in sand are determined by the mean denudation rate of all of the geomorphologic processes taking place in the catchment, including debris flow processes as well as slower processes such as hill slope diffusion. In contrast, the concentrations in pebbles are probably related to debris flows occurring in steep slopes. The mean denudation rates calculated in the catchment are between 30 and 50 m/Myr, while the denudation rates associated with debris flow are between 59 and 81 m/Myr. These denudation rates are consistent with those calculated using different methods, such as measuring eroded volumes.  相似文献   

20.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号