首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
The increase of soil mass flux with distance downwind, the fetch effect for wind erosion, has been observed and reported on since 1939. This model incorporates the following three mechanisms. (1) The ‘avalanching’ mechanism in which one particle moving downwind would dislodge one or more particles upon impact with the surface. The result of a chain of such events is an increase of mass flux with distance. (2) The ‘aerodynamic feedback’ effect, suggested by P. R. Owen, in which the aerodynamic roughness height is increased by saltation of particles; the resulting increased momentum flux increases saltation. These increases define a positive feedback loop with respect to distance downwind. (3) The ‘soil resistance’ mechanism, which is largely an expression of the change with distance of threshold velocity. Change of threshold velocities may be caused by inhomogeneities of the soil or progressive destruction of aggregates and crust in the direction of saltation fetch. An experiment was run in March 1993 at Owens Lake to test this model. Detailed measurements of wind profiles and mass fluxes were taken on a line parallel to the wind direction. These data support the proposed three-mechanism model.  相似文献   

2.
The erosion of sediment by wind and the resulting mass flux density profile is thought to be described by a mathematical function that bears information on the mechanisms responsible for the movement of individual particles by the wind, and such functions have been studied extensively. In this study several functions are evaluated that have been proposed to describe the variation in mass flux density with height of wind‐blown sediment, with the flux containing a mixture of particles in suspension and saltation, based on detailed field data at four land types in the Minqin area of north‐western China, where severe wind erosion occurs. High‐resolution mass flux density measurements at 50 heights, collected at 20 mm intervals to a height of 1 m above the surface, were obtained using vertically segmented samplers. Three kinds of functions fit the measured flux density profiles reasonably well, but a three‐parameter modified exponential function is preferred because it contains fewer coefficients to be defined and provides a reasonably good fit to the measured mass flux density profiles. This and previous conclusions suggest that the decay with height of mass flux density of sediments dominated by saltation particles as in the present study tends to follow a modified exponential function law, but a modified power function law replaces the modified exponential function law when the height extends to a level high enough to be dominated by suspension particles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash–saltation processes can move sediments in conditions where no motion is predicted by aeolian processes. The effect of raindrop impact on the movement of soil particles by wind was measured on a sand beach plain using an acoustic sediment sampler. In general, an increase of particle movement by wind at the sensor heights was observed during rainfall. Rainfall also affected the wind erosion process during and after rain by changing the cohesive conditions of the surface. The influence of the surface moisture content on the initiation of wind erosion and on the vertical distribution of transported sand particles was studied in a wind tunnel. Moisture significantly increased threshold wind velocities for the initiation of sediment transport and modified vertical sediment profiles.  相似文献   

4.
Wind erosion modelling efforts, both ?eld and wind tunnel studies, have traditionally focused on saltation‐based processes for estimating dust emissions from high wind events. This approach gives generally good results when saltation‐sized particles, 90 µm to 2 mm mean diameter, are prevalent on the exposed soil surface. The Columbia Plateau, located in north‐central Oregon and south‐central Washington, is a region with extensive loess deposits where up to 90 per cent of sieved particles (by mass) are less than 100 µm mean diameter. During high‐wind events, large amounts of soil and ?ne particulate matter are suspended. However, ?eld surfaces typically show little evidence of surface scouring or saltation, e.g. soil drifts or covered furrows. Velocity pro?le analysis of two high‐wind events and additional data from a third event show evidence of direct suspension process where saltation is not a major mechanism for eroding soil or generating dust emissions. Surface roughness heights are less than saltation roughness height estimates during peak wind speeds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports on a wind tunnel investigation of particle segregation, ripple formation and surface armouring within sand beds of systematically varied particle size distribution, from coarsely skewed to bimodal. By design, the system was closed with no external inputs of mass from an external particle feed. Particles too coarse to travel in saltation for the given range in wind speed were dyed red in order to distinguish them in optical images from finer sand particles, which could be entrained into the unidirectional airflow. A 3D laser scanner measured the changing bed topography at regular time intervals during 18 experiments involving varied combinations of wind speed and bed texture. Image classification techniques were used to investigate the coincident self‐organization of the two populations of particles, as distinguished by their colour. As soon as saltation commenced, some of the red particles segregated into thin discontinuous patches. Particle trapping and sheltering on these rough patches was strongly favoured, causing them to grow preferentially. During the earliest stages of formation, bedform growth coincided with: (i) rapid coarsening of the surface texture; and (ii) the merging of proto‐ripple ‘crests’ to generate larger rhythmic bedforms of lower frequency. Consistent with previous work, ripple size was observed to increase under stronger winds when not exceeding the threshold for entrainment of the coarse‐mode or red particles from the crest. With declining rates of mass transport and particle segregation as the bed surface armoured, and the consequent deceleration of ripple propagation through to the end of each experiment, all surfaces eventually attained a steady‐state morphometry. At saturation, the largest ripples developed on beds having the lowest initial concentration of red particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The transport of sand by the wind occurs predominantly by the process of saltation. Following the entrainment of sand by an above threshold wind, the saltation system is regulated by the mutual interaction of the atmospheric boundary‐layer, the sand cloud and the sand bed. Despite existing data on the spatial and temporal development of the sand transport system, very little is known about the development of the saltation system towards equilibrium. Results are presented from wind‐tunnel experiments that were designed to address the simultaneous spatial and temporal development of the saltation system, with and without artificial sand feed. The development of the saltation system was monitored over a streamwise length of 8 m during a period of 3600 s. Mass flux data were measured simultaneously at 1 m intervals by the downwind deployment of seven Aarhus sand traps. Wind velocity data were collected throughout the experiments. The downwind spatial development of the saltation system is manifested by an overshoot in mass flux and friction velocity prior to declining towards a quasi‐equilibrium. Mass flux overshoots at approximately 4 m downwind, in remarkable agreement with existing data of a comparable scale. Friction velocity overshoots at approximately 6 m downwind, a result not previously witnessed in saltation studies. The overshoot of mass flux prior to the overshoot in friction velocity is a spatial manifestation of the time lag between the entrainment of grains and the deceleration of the wind by the grains in transport. Temporally, the development of the saltation system is controlled by the availability of entrainable grains from the sand bed. Through time the saltation system develops from a transport‐limited to a supply‐limited system. The depletion of the sand bed through time limits the appropriateness of the assumption of ‘equilibrium’ for the universal prediction of mass flux. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The effect of a step change in macro‐roughness on the saltation process under sediment supply limited conditions was examined in the atmospheric boundary layer. For an array of roughness elements of roughness density λ = 0.045 (λ = total element frontal area/total surface area of the array) the horizontal saltation flux was reduced by 90% (±7%) at a distance of ≈150 roughness element heights into the array. This matches the value predicted using an empirical design model and provides confidence that it can be effectively used to engineer roughness arrays to meet sand flux reduction targets. Measurements of the saltation flux characteristics in the vertical dimension, including: saltation layer decay (e‐folding) height and particle size, revealed that with increasing distance into the array, the rate of mass flux change with increasing height decreased notably, and (geometric) mean particle diameter decreased. The distribution of the saltation mass flux in the vertical remains exponential in form with increasing distance into the roughness array, and the e‐folding height increases as well as increasing at a greater rate as particle diameter diminishes. The increase in e‐folding height suggests the height of saltating particles is increasing along with their mean speed. This apparent increase in mean speed is likely due to the preferential removal, or sequestration, of the slower moving particles across the size spectrum, as they travel through the roughness array. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Vertical profiles of the streamwise mass flux of blown sand in the near-bed (< 17 mm) region are analysed from high-resolution measurements made using an optical sensor in a wind tunnel. This analysis is complemented by detailed measurements of mass flux and mean velocity profiles throughout the boundary layer depth (0·17 m) using passive, chambered sand traps of small dimensions and armoured thermal anemometers, respectively. The data permit a preliminary analysis of the relations between the observed forms of the profiles of near-bed fluid stress and horizontal mass flux within a carefully conditioned boundary layer. Profiles of mass flux density are found to be characterized by three regions of differing gradient with transitions at about 2 mm and 19 mm above the bed. The exponential decay of mass flux with height is confirmed for elevations above 19 mm, and when plotted as a function of u*2/g (a parameter of mean vertical trajectory height in saltation), the gradient of mass flux in this region scales with the wake-corrected friction velocity (u), where u > 0·30 m s−1. A separate near-bed region of more intense transport below 19 mm is identified which carries 80 per cent of the total mass flux. This region is evident in some previous field and wind tunnel data but not in profiles simulated by numerical models. Ventilated passive sand traps underestimate mass flux in this region by 37 per cent. At slow or moderate wind speeds a third significant region below 2 mm is observed. These regions are likely to be related to grain populations in successive saltation, low-energy ejections and intermittent bed contact, respectively. Optical measurements reveal locally high grain concentrations at some elevations below 5 mm; these heights scale with transport rate, mass flux gradient and wind speed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Several possible effects of blowing snow on the atmospheric boundary layer are investigated, mostly within the general framework of the Prairie Blowing Snow Model (PBSM). The processes of snow saltation and suspension are first described. Variations to the drift density profile are tested and the effects of stratification and density variation calculations are evaluated. Despite high density gradients of blowing snow, stratification effects on turbulence and the velocity profiles can generally be neglected. However, with saltating or suspended snow in a constant shear stress layer, part of the shear stress is carried by the particles. A highly simplified, single-phase approach, based on the density variation of the air–snow mixture coupled to a simple turbulent stress–strain relationship, is used to illustrate this. Sublimation rates in a column of blowing snow are calculated using the PBSM and results are compared with those obtained with a modified formulation which incorporates a spectrum of sublimating particles of varying sizes at each height in a steady-state surface boundary layer and different specifications of the ventilation velocity.  相似文献   

10.
In aeolian saltation, the sand bed is a mixture of sand particle with a wide range of particle sizes. Generally, the particle size distribution (PSD) of saltating particles is ignored by previous aeolian transport models, which will result in differences between predictions and observations. To better understand the saltation process, a prediction method of the PSD of saltating particles was proposed in this article. The probability of contact between incident sand and bed sand was introduced into the particle-bed collision process. An artificial PSD of the incident saltating particles was set as the initial condition. A stochastic particle-bed collision model considering contact probability was then used in each iteration step to calculate a new PSD of saltating particles. Finally, the PSD of saltating particles can be determined when aeolian saltation reaches a steady state (saltation is in a steady state when its primary characteristics, such as horizontal mass flux and the concentration of saltating particles, remain approximately constant over time and distance). Meanwhile, according to the experimental results, a calculation formula for the contact parameter n is given, which characterizes the shielding effect of particles on each other. That is, if soil PSD and friction velocity were given, the PSD of saltating particles can be determined. Our results do not depend on the initial conditions, and the predicted results are consistent with the experimental results. It indicated that our method can be used to determine the PSD of saltating particles. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
The grain mobility and roughness of a surface exposed to wind are dependent on the grain size of the surface particles. This paper deals with the temporal variation in the grain size of surface material using an analytical method based on the effective surface concept. The analysis of grain size data obtained from a wind tunnel experiment indicated that, above the threshold wind friction velocity for all surface particles, the grain-size distribution of surface particles was very similar to that of the parent material over a time period of 10 to 15 minutes. However, the mean grain size of surface particles apparently decreased over the initial time period of 2 to 3 minutes. We therefore confirm earlier studies that on a non-uniform grain bed a larger particle could be more mobile than a smaller particle if the wind friction velocity was higher than the threshold for the larger particle. However, this does not imply that the largest particle is most mobile due to the non-linear dynamics of aeolian sediment transport processes. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
Depth profiles of particle streamwise velocity, concentration and bedload sediment transport rate were measured in a turbulent and supercritical water flow. One‐size 6 mm diameter spherical glass beads were transported at equilibrium in a two‐dimensional 10% steep channel with a mobile bed. Flows were filmed from the side by a high‐speed camera. Particle tracking algorithms made it possible to determine the position, velocity and trajectory of a very large number of particles. Approximately half of the sediment transport rate was composed by rolling grains, and the other half by saltation. This revealed a complex structure, with several concentration and flux peaks due to rolling, and one peak due to saltation. With an increase of the sediment transport rate, the depth structure remained the same at the water/granular interface, with peak value increases but with no shift in elevations. The saltation region expanded towards higher elevations with an increase of the particle velocity commensurate to the water velocity. The proportion of the sediment transport rate in saltation did not vary significantly. The particle streamwise velocity profiles exhibited three segments: an exponential decay in the bed, a linear increase where rolling and saltation co‐existed, and above this, a logarithmic‐like shape due to saltating particles. These results are comparable to profiles measured and modelled in dry granular free surface flows and in more intense bedload such as sheet flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The horizontal and vertical sand mass fluxes in aeolian sand transport are investigated in a wind tunnel by PTV (particle tracking velocimetry). According to the particle velocity and volume fraction of each individual particle from PTV images, the total horizontal sand mass flux, the horizontal mass fluxes of ascending and descending sand particles, and upward and downward vertical sand fluxes are analyzed. The results show that the horizontal mass fluxes of ascending and descending sand particles generally decrease with the increase of height and can be described by an exponential function above about 0.03 m height. At the same friction velocity, the decay heights of the total horizontal sand mass flux and the horizontal mass fluxes of ascending and descending sand particles are very similar. The proportion of horizontal mass flux of ascending sand particles is generally about 0.3–0.42, this means the horizontal mass flux of descending sand particles makes an important contribution to the total horizontal sand mass flux. Both the upward and downward vertical sand mass fluxes generally decrease with height and they are approximately equal at the same height and friction velocity. The relation between upward (or downward) vertical sand mass flux and horizontal sand mass flux can be described by a power function. The present study is used to help understand the transport of ascending and descending sand particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Wind erosion characteristics of Sahelian surface types   总被引:1,自引:0,他引:1  
The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
As previously observed in marine sediments collected downwind of African or South American continental sources, recent studies of sediment cores collected at the bottom of Mejillones Bay in north Chile (23°S) show a laminated structure in which the amount of particles of aeolian origin and their size create significant differences between the layers. This suggests inter‐annual to inter‐decadal variations in the strength of the local southerly winds responsible for (1) the erosion of the adjacent hyperarid surface of the Mejillones Pampa, and (2) the subsequent transport of the eroded particles towards the bay. A simple model accounting for the vertical uptake, transport, and deposition of the particles initially set into motion by wind at the surface of the pampa is proposed. This model, which could be adapted to other locations, assumes that the initial rate of (vertical) uptake is proportional to the (horizontal) saltation flux quantified by means of White's equation, that particles are lifted to a height (H), increasing with the magnitude of turbulence, and that sedimentation progressively removes the coarsest particles from the air column as it moves towards the bay. In this model, the proportionality constant (A) linking the vertical flux of particles with the horizontal flux, and the injection height (H) control the magnitude and size distribution of the deposition flux in the bay. Their values are determined using the wind speed measured over the pampa and the size distribution of particles collected in sediment traps deployed in the bay as constraints. After calibration, the model is used to assess the sensitivity of the deposition flux to the wind intensity variations. The possibility of performing such quantitative studies is necessary for interpreting precisely the variability of the aeolian material in the sediment cores collected at the bottom of Mejillones Bay. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Particle–turbulence interaction has been a research focus in the field of pneumatic transport, especially in aeolian environments. However, knowledge regarding the effect of saltating particles on the turbulence characteristics is very limited. In this article, a process of sand-laden flow from forming sand streamers to stability is investigated via a coupled mathematical model of wind-blown sand that includes the spatiotemporal development. The variations in the turbulence characteristics, such as the mean velocity and turbulence intensity in clean air or sand-laden flow field, are analyzed. The results show that the splash process of sand grains near the wall decrease the wind speed in the saltation layer and destroy the low-speed streaks. Moreover, the profiles of streamwise turbulence intensity exhibit a transition from ‘decreasing’ to ‘increasing’ and approximately intersect at an ‘intensity focus’, which is presented for the first time. Furthermore, it was found that saltating particles could enhance the Reynolds stress. Meanwhile, it was also noticed that the shear stress at the wall surface is greater than the impact threshold and that there is a tendency towards the impact threshold. Therefore, saltation makes the particle Reynolds number of sand-laden flow higher than that under non-saltation conditions, thus changing the particles’ effect on the turbulence intensity. Gravity-dominated saltation is probably the most essential difference between wind-blown sand and other traditional two-phase flows. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.  相似文献   

20.
Crusts play a crucial role in the reduction or control of wind erosion. In this regard, the resilience and durability of crusts are of prime importance. Crusts have high resilience and durability against wind flow shear stresses; however, they are prone to abrasion induced by saltating particles. Therefore, estimating crust durability in abrasion rupture has practical importance. In this study, a cyanocrust and a biocemented sand crust were subjected to a controlled flux of saltating particles for different sandblasting periods to provide a framework for predicting crust rupture. The velocity and pre- and post-collision energy of the saltating particles were measured using high-speed photography. The changes in the strength of the crusts after different periods of sandblasting were determined using a scratch test. The results suggested that the average strength of the cyanocrust and biocemented sand crust became 0.25 and 0.7 of their corresponding initial values after 30 min of sandblasting. Also, the average stiffness of the cyanocrust and biocemented sand crust decreased to 0.5 and 0.9 of their initial values, respectively. Furthermore, the amount of impact energy absorbed by the crusts increased by the deterioration of the crusts. Compiling the results of the wind tunnel experiment and scratch tests yielded an exponential equation which can be used to estimate crust durability in a given condition of saltation. Based on this equation, the cyanocrust and biocemented sand crust will break down entirely after 23 and 449 min, respectively, at a wind velocity of 6.8 m/s and a saltation flux of 1 g/s/m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号