首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The entrainment and subsequent transport of PM10 (particulate matter <10 µm) has become an important and challenging focus of research for both scientific and practical applications. Arid and semi‐arid environments are important sources for the atmospheric loading of PM10, although the emission of this material is often limited by surface crusts. It has been suggested that the primary mechanisms through which PM10 is released from a crusted surface are abrasion by saltating grains or disturbance by agricultural and recreational activities. To examine the importance of saltation abrasion in the emission of PM10, a series of field wind tunnel tests were conducted on a clay‐crusted surface near Desert Wells, Arizona. In a previous part of this study it was found that the emission rate varies linearly with the saltation transport rate, although there can be considerable variation in this relationship. This paper more closely examines the source of the variability in the abrasion efficiency, the amount of PM10 emitted by a given quantity of saltating grains. The abrasion efficiency was found to vary with the susceptibility of the surface to abrasion, the ability of the sand to abrade that surface and the availability of material with a caliper size <10 µm within the crust. Specifically, the results of the study show that the abrasion efficiency is related to the crust strength, the amount of surface disturbance and the velocity of the saltating grains. It is concluded that the spatial and temporal variability of these controls on the abrasion efficiency imposes severe contextual limitations on experimentally derived models, and can make theoretical models too complex and impractical to be of use. Copyright­© 2001 John Wiley & Sons, Ltd.  相似文献   

2.
In aeolian saltation, the sand bed is a mixture of sand particle with a wide range of particle sizes. Generally, the particle size distribution (PSD) of saltating particles is ignored by previous aeolian transport models, which will result in differences between predictions and observations. To better understand the saltation process, a prediction method of the PSD of saltating particles was proposed in this article. The probability of contact between incident sand and bed sand was introduced into the particle-bed collision process. An artificial PSD of the incident saltating particles was set as the initial condition. A stochastic particle-bed collision model considering contact probability was then used in each iteration step to calculate a new PSD of saltating particles. Finally, the PSD of saltating particles can be determined when aeolian saltation reaches a steady state (saltation is in a steady state when its primary characteristics, such as horizontal mass flux and the concentration of saltating particles, remain approximately constant over time and distance). Meanwhile, according to the experimental results, a calculation formula for the contact parameter n is given, which characterizes the shielding effect of particles on each other. That is, if soil PSD and friction velocity were given, the PSD of saltating particles can be determined. Our results do not depend on the initial conditions, and the predicted results are consistent with the experimental results. It indicated that our method can be used to determine the PSD of saltating particles. © 2020 John Wiley & Sons, Ltd.  相似文献   

3.
Particle–turbulence interaction has been a research focus in the field of pneumatic transport, especially in aeolian environments. However, knowledge regarding the effect of saltating particles on the turbulence characteristics is very limited. In this article, a process of sand-laden flow from forming sand streamers to stability is investigated via a coupled mathematical model of wind-blown sand that includes the spatiotemporal development. The variations in the turbulence characteristics, such as the mean velocity and turbulence intensity in clean air or sand-laden flow field, are analyzed. The results show that the splash process of sand grains near the wall decrease the wind speed in the saltation layer and destroy the low-speed streaks. Moreover, the profiles of streamwise turbulence intensity exhibit a transition from ‘decreasing’ to ‘increasing’ and approximately intersect at an ‘intensity focus’, which is presented for the first time. Furthermore, it was found that saltating particles could enhance the Reynolds stress. Meanwhile, it was also noticed that the shear stress at the wall surface is greater than the impact threshold and that there is a tendency towards the impact threshold. Therefore, saltation makes the particle Reynolds number of sand-laden flow higher than that under non-saltation conditions, thus changing the particles’ effect on the turbulence intensity. Gravity-dominated saltation is probably the most essential difference between wind-blown sand and other traditional two-phase flows. © 2020 John Wiley & Sons, Ltd.  相似文献   

4.
Three-dimensional saltating processes of multiple sediment particles   总被引:1,自引:1,他引:0  
The purpose of this study was to investigate the interacting mechanism between the saltating particles near a channel bed. A three-dimensional real-time flow visualization technique was developed to measure the interparticle collision behaviors during the saltating process. Based on the experimental data, the distribution of the collision points was found to be symmetric. This confirms the assumption that the projections of the collision points onto the reasonable plane are uniformly distributed. A three-dimensional saltating model was also developed. This model produced satisfactory results. The model is able to simulate the continuous saltating trajectories of several particles. The simulated dimensionless saltating height, longitudinal and vertical saltation velocity components were found to increase as the dimensionless particle diameter and the dimensionless flow transport capacity parameter increase, while the simulated lateral saltation velocity component varies inversely with the dimensionless flow transport capacity parameter. A regression equation for the bed load transport rate was also obtained.  相似文献   

5.
Temporal aspects of the abrasion of microphytic crusts under grain impact   总被引:1,自引:0,他引:1  
Wind‐tunnel simulations of the response of two moss crusts to grain impact indicate that, given sufficient time, these surfaces will deteriorate under very low wind velocities only slightly above u*t for the loose, saltating grains. In parallel with these experiments, the frequency distributions of ultimate strength and penetration energy were determined for each of the two crust types via penetrometry. Pohlia was found to be stronger than Tortula; but, even so, both of these crusts had ultimate strengths 20–350 times higher than the force delivered by a single grain impacting each surface at a velocity of 1 ms?1. In comparison, the modulus of deformation and penetration energy data were very similar for the two surface types, especially for the weakest areas of crust development. This observation is in accord with the wind‐tunnel simulations that also found no consistent difference in the response of these two crust types to impact. In comparison with crusts formed by clay and salt, fibrous microphytic crusts are morphologically complex and typically weak. The notable elasticity of these surfaces does reduce the force of grain impact, and thereby provides some protection against rupture. One of the central conclusions of this study suggests that not only is the particle kinetic energy at impact important in crust breakdown, but also tiny fractures at points of localized stress concentration contribute to a progressive reduction in the integrity of the filament net. In some of the experiments conducted as part of this study, up to 50 or more minutes of constant bombardment was required to produce small abrasion marks on selected areas of the microphytic crust. This study prepares a foundation for future experiments needed to examine the breakdown of complex crusts formed in nature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents results from a study designed to explore the effects of beach surface moisture and fetch effects on the threshold of movement, intensity of sand transport by wind and mass flux. The experiment was carried out over a period of five weeks at Greenwich Dunes, Prince Edward Island, Canada in May and June 2002. Moisture content was measured with a Delta‐T moisture probe over a 50 m by 25 m grid established on the beach. Measurements of wind speed and direction were made with arrays of cup anemometers and a two‐dimensional sonic anemometer. Transport intensity was measured at a height of 2–4 cm above the bed using omnidirectional saltation probes which count the impact of saltating grains on a piezoelectric crystal. Anemometers and saltation probes were sampled at 1 Hz. Sand transport was measured with vertical integrating sand traps over periods of 10–20 minutes. Results show that where there is a considerable supply of dry sand the saltation system responds very rapidly (1–2 s) to fluctuations in wind speed, i.e. to wind gusts. Where sand supply from the surface is limited by moisture, mean transport rates are much lower and this reflects in both a reduction in the instantaneous transport rate and in a transport system that becomes increasingly intermittent. Threshold wind speed is significantly correlated with an increase in surface moisture content near the upwind end of the beach fetch, but the relationship is not significant at the downwind end where sediment transport is initiated primarily by saltation impact from upwind. Mass flux increases with increasing fetch length and the relationship is described best by a power function. Further work is necessary to develop a theoretical function to predict the increase in transport with fetch distance as well as the critical fetch distance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The transport of sand by the wind occurs predominantly by the process of saltation. Following the entrainment of sand by an above threshold wind, the saltation system is regulated by the mutual interaction of the atmospheric boundary‐layer, the sand cloud and the sand bed. Despite existing data on the spatial and temporal development of the sand transport system, very little is known about the development of the saltation system towards equilibrium. Results are presented from wind‐tunnel experiments that were designed to address the simultaneous spatial and temporal development of the saltation system, with and without artificial sand feed. The development of the saltation system was monitored over a streamwise length of 8 m during a period of 3600 s. Mass flux data were measured simultaneously at 1 m intervals by the downwind deployment of seven Aarhus sand traps. Wind velocity data were collected throughout the experiments. The downwind spatial development of the saltation system is manifested by an overshoot in mass flux and friction velocity prior to declining towards a quasi‐equilibrium. Mass flux overshoots at approximately 4 m downwind, in remarkable agreement with existing data of a comparable scale. Friction velocity overshoots at approximately 6 m downwind, a result not previously witnessed in saltation studies. The overshoot of mass flux prior to the overshoot in friction velocity is a spatial manifestation of the time lag between the entrainment of grains and the deceleration of the wind by the grains in transport. Temporally, the development of the saltation system is controlled by the availability of entrainable grains from the sand bed. Through time the saltation system develops from a transport‐limited to a supply‐limited system. The depletion of the sand bed through time limits the appropriateness of the assumption of ‘equilibrium’ for the universal prediction of mass flux. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Saltation of sediment particles is an important pattern of bedload transport.Based on force analysis for sediment particles,a Lagrangian model was proposed for the saltating motion of bedload in river flows,which was then solved with numerical method.Simulation results on the saltating trajectories neglecting particle rotation and turbulence effects compare fairly well with experimental observations.The mean values of the saltation parameters (saltation height,length and velocity) also agree well with the previous experimental data.Based on the numerical results,regression equations for the dimensionless saltation height,length and velocity were presented.Using the numerically achieved characteristics of the sediment saltation,we also obtained mathematical expression for the sediment transport rate.The studies in this paper are significant for its contribution to mechanism of the bedload motion and the computation of sediment transport rate.  相似文献   

10.
The flow of glass dust particles in air was investigated experimentally over a flat bed in a wind tunnel. Particle concentrations were measured by light scattering diffusion (LSD) and digital image processing. It was verified that saltation is the main mechanism for ejection of dust particles. Vertical mean dust concentrations for ‘pure dust’ and two mixtures of dust and saltating glass particles were determined and analysed. The experiments confirmed that for the ‘pure dust’ configuration the mean concentration decreases as a power function with height. For the mixture configurations and for free stream velocities close to the threshold velocity, the mean concentration also decreases in a power function. For higher velocities, mean concentration decreases respectively as a power function or exponential function for large and small ratios of the dust:saltating particles respectively. The exponent of the power law reflects the dust:particle ratio and the free stream flow velocity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The response of saltation to wind speed fluctuations   总被引:2,自引:0,他引:2  
The response time of saltation to spatial or temporal wind speed fluctuations constitutes an important control parameter for aeolian sediment transport and deposition. In this paper, we present direct measurements of the response time obtained from several field experiments. The sand transport was studied using six small microphones arranged in a vertical profile and collocated with a sonic anemometer, a webcam and a cup anemometer tower. The webcam was coupled with the sonic anemometer via a personal computer and provides information on creeping and saltating grains with a sampling rate of 10 Hz. Sediment transport measurements were obtained over four periods. The Wiener filter, a signal processing technique, is used to obtain a discrete transfer function that relates the horizontal wind speed and the non‐intermittent sand transport. The transfer function can be established using an exponential function with a time constant or characteristic response time τ without time shift. The response time fluctuated between zero and 1·5 seconds depending on the turbulence intensity, the saltation activity, the measuring height and sampling rates. The Wiener filter coefficients suggest that the response of saltation to wind speed alterations is determined by more than one process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of a step change in macro‐roughness on the saltation process under sediment supply limited conditions was examined in the atmospheric boundary layer. For an array of roughness elements of roughness density λ = 0.045 (λ = total element frontal area/total surface area of the array) the horizontal saltation flux was reduced by 90% (±7%) at a distance of ≈150 roughness element heights into the array. This matches the value predicted using an empirical design model and provides confidence that it can be effectively used to engineer roughness arrays to meet sand flux reduction targets. Measurements of the saltation flux characteristics in the vertical dimension, including: saltation layer decay (e‐folding) height and particle size, revealed that with increasing distance into the array, the rate of mass flux change with increasing height decreased notably, and (geometric) mean particle diameter decreased. The distribution of the saltation mass flux in the vertical remains exponential in form with increasing distance into the roughness array, and the e‐folding height increases as well as increasing at a greater rate as particle diameter diminishes. The increase in e‐folding height suggests the height of saltating particles is increasing along with their mean speed. This apparent increase in mean speed is likely due to the preferential removal, or sequestration, of the slower moving particles across the size spectrum, as they travel through the roughness array. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Depth profiles of particle streamwise velocity, concentration and bedload sediment transport rate were measured in a turbulent and supercritical water flow. One‐size 6 mm diameter spherical glass beads were transported at equilibrium in a two‐dimensional 10% steep channel with a mobile bed. Flows were filmed from the side by a high‐speed camera. Particle tracking algorithms made it possible to determine the position, velocity and trajectory of a very large number of particles. Approximately half of the sediment transport rate was composed by rolling grains, and the other half by saltation. This revealed a complex structure, with several concentration and flux peaks due to rolling, and one peak due to saltation. With an increase of the sediment transport rate, the depth structure remained the same at the water/granular interface, with peak value increases but with no shift in elevations. The saltation region expanded towards higher elevations with an increase of the particle velocity commensurate to the water velocity. The proportion of the sediment transport rate in saltation did not vary significantly. The particle streamwise velocity profiles exhibited three segments: an exponential decay in the bed, a linear increase where rolling and saltation co‐existed, and above this, a logarithmic‐like shape due to saltating particles. These results are comparable to profiles measured and modelled in dry granular free surface flows and in more intense bedload such as sheet flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The importance of particle-particle collisions in sediment saltation in the bed-load layer is analyzed herein by means of numerical simulation. The particle saltation theoretical/numerical model follows a Lagrangian approach, and addresses the motion of sediment particles in an open channel flow described by a logarithmic velocity profile. The model is validated with experimental data obtained from the literature. In order to evaluate the importance of the phenomenon, simulations with and without particle-particle collisions were carried out. Results for two different sediment concentrations are presented, namely 0.13% and 2.33%. For each concentration of particles, three different flow intensities were considered, and trajectories of two different particle sizes, within the sand range were computed. Changes in particle rotation, particle velocity, and angle of trajectory before and after particle-particle collisions appear to be relatively important at lower shear stresses, whereas they decrease in significance with increasing flow intensities. Analyses of the evolution in time of the second order moment of particle location suggest that inter-particle collisions introduce transverse diffusion in saltating particles in the span-wise direction.  相似文献   

15.
Wind erosion characteristics of Sahelian surface types   总被引:1,自引:0,他引:1  
The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Severe dust storms in the Southern Aral Sea Basin have become common with the desiccation of the sea. The high incidence of dust in the area has had severe ecological consequences. Within the framework of efforts to reduce this phenomenon, deflatability as well as deflatability‐related characteristics of some prominent soils/sediment surfaces in the Southern Aral Sea Basin were examined. The materials included a salt crust from a developed Solonchak, a Takyr crust and a Takyr‐like soil, and salt crusts from undeveloped Solonchaks formed on the exposed bottom of the Aral Sea. Characteristics determined were particle size distribution, dry aggregate size distribution and salt, carbonate and organic carbon contents. Deflatability was examined using a suction type wind tunnel with a SENSIT‐type sensor to detect airborne unconsolidated material, on materials treated to different moisture levels and with a chemical stabilizer, and on restored crusts created from the unconsolidated materials. Fine sand dominates in the materials, and in the Takyr crust and Takyr‐like soils is accompanied by significant amounts of silt and clay. All materials contain moderate amounts of carbonate and are low in organic matter. All soils/sediments contain salts, but in the salt crusts of the Solonchaks the salt fraction dominates. They all have more than 50 per cent PM850 (particles with diameter <850 µm), indicating a relatively high deflatability potential. The materials from the Takyr crusts and Takyr‐like soil with a high proportion of fine aggregates had the lowest threshold friction velocities, while the salt crusts of the Solonchaks with a high proportion of coarse aggregates had the highest. This suggests that Takyrs and Takyr‐like soils are the most deflatable and Solonchak soils the least deflatable. These differences are attributed to the presence of salts that create stable, large aggregates in the Solonchak crusts. Wetting of the materials to three moisture levels considerably increased threshold friction velocity. The increase was most prominent in the salt‐rich materials, and was attributed to the rapid formation of surface films by drying in the course of the wind tunnel determinations. Applications of chemical stabilizers at two levels also considerably increased threshold friction velocity. On the restored crusts, threshold friction velocity dramatically increased, occasionally to non‐recordable values. This increase was monitored with both the salt crusts characteristic for the Solonchak soils and the fine‐grained crusts characteristic for the Takyr soils. The stability was attributed to the tightly packed salt particles in the salt crusts, and to the cohesive properties of the fine‐grained materials in the Takyr crusts. Once the crusts were ruptured, however, strong deflation commenced. These results suggest that by maintaining moisture in the soils/sediments (for example, by maintaining a high water table in the Amu‐Darya river flood plain) deflation can be reduced. By the same means, deflation can be reduced by creating new crusts or by preserving existing crusts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this paper is to examine the nature of particle saltation and movement over the beds of fixed roughness from flume experiments. A series of experiments are carried out to study the saltation of individual sand particles of different sizes over rough beds under different flow conditions. A 3‐D acoustic Doppler velocimeter is used to record the fluid velocity components; subsequently, under different flow conditions, the images of released sand particles are recorded using high‐speed video imaging technique. Systematic analysis is made with regard to the forces acting on the grains and the variation of their magnitudes along the saltation trajectories of the grains. Relations between the saltation parameters, flow intensity and bed roughness are developed. The distributions of the angle of orientations during a single saltation follows almost a Gaussian distribution. The shape of the Gaussian distribution depends on the particle size and bed roughness. Particle collisions with rough beds and the resulting coefficients of restitution are also discussed. A theoretical framework is developed to compute the mean particle velocity considering the spin in the energy balance equation. Results of the detailed analysis using the imaging technique are much better than in previously reported studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The horizontal and vertical sand mass fluxes in aeolian sand transport are investigated in a wind tunnel by PTV (particle tracking velocimetry). According to the particle velocity and volume fraction of each individual particle from PTV images, the total horizontal sand mass flux, the horizontal mass fluxes of ascending and descending sand particles, and upward and downward vertical sand fluxes are analyzed. The results show that the horizontal mass fluxes of ascending and descending sand particles generally decrease with the increase of height and can be described by an exponential function above about 0.03 m height. At the same friction velocity, the decay heights of the total horizontal sand mass flux and the horizontal mass fluxes of ascending and descending sand particles are very similar. The proportion of horizontal mass flux of ascending sand particles is generally about 0.3–0.42, this means the horizontal mass flux of descending sand particles makes an important contribution to the total horizontal sand mass flux. Both the upward and downward vertical sand mass fluxes generally decrease with height and they are approximately equal at the same height and friction velocity. The relation between upward (or downward) vertical sand mass flux and horizontal sand mass flux can be described by a power function. The present study is used to help understand the transport of ascending and descending sand particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The problem of impact–entrainment relationship is one of the central issues in understanding saltation, a primary aeolian transport mode. By using particle dynamic analyser measurement technology the movement of saltating particles at the very near‐surface level (1 mm above the bed) was detected. The impacting and entrained particles in the same impact–entrainment process were identified and the speeds, angle with respect to the horizontal, and energy of the impacting and entrained sand cloud were analysed. It was revealed that both the speed and angle of impacting and entrained particles vary widely. The probability distribution of the speed of impacting and entrained particles in the saltating cloud is best described by a Weibull distribution function. The mean impact speed is generally greater than the mean lift‐off speed except for the 0·1–0·2 mm sand whose entrainment is significantly influenced by air drag. Both the impact and lift‐off angles range from 0° to 180°. The mean lift‐off angles range from 39° to 94° while the mean impact angles range from 40° to 78°, much greater than those previously reported. The greater mean lift‐off and especially the mean impact angles are attributed to mid‐air collisions at the very low height, which are difficult to detect by conventional high‐speed photography and are generally ignored in the existing theoretical simulation models. The proportion of backward‐impacting particles also evidences the mid‐air collisions. The impact energy is generally greater than the entrainment energy except for the 0·1–0·2 mm sand. There exists a reasonably good correlation of the mean speed, angle and energy between the impacting and entrained cloud in the impact–entrainment process. The results presented in this paper deserve to be considered in modelling saltation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号