首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies illustrate the wind and water erosion‐reducing potential of semi‐permanent microbiotic soil crusts in arid and semi‐arid desert environments. In contrast, little is hitherto known on these biological crusts on cropland soils in temperate environments where they are annually destroyed by tillage and quickly regenerate thereafter. This study attempts to fill the research gap through (a) a field survey assessing the occurrence of biological soil crusts on loess‐derived soils in central Belgium in space and time and (b) laboratory flume (2 m long) experiments simulating concentrated runoff on undisturbed topsoil samples (0.4 × 0.1 m2) quantifying the microbiotic crust effect on soil erosion rates. Three stages of microbiotic crust development on cropland soils are distinguished: (1) development of a non‐biological surface seal by raindrop impact, (2) colonization of the soil by algae and gradual development of a continuous algal mat and (3) establishment of a well‐developed microbiotic crust with moss plants as the dominant life‐form. As the silt loam soils in the study area seal quickly after tillage, microbiotic soil crusts are more or less present during a large part of the year under maize, sugar beet and wheat, representing the main cropland area. On average, the early‐successional algae‐dominated crusts of stage 2 reduce soil detachment rates by 37%, whereas the well‐developed moss mat of stage 3 causes an average reduction of 79%. Relative soil detachment rates of soil surfaces with microbiotic crusts compared with bare sealed soil surfaces are shown to decrease exponentially with increasing microbiotic cover (b = 0·024 for moss‐dominated and b = 0·006 for algae‐dominated crusts). In addition to ground surface cover by vegetation and crop residues, microbiotic crust occurrence can therefore not be neglected when modelling small‐scale spatial and temporal variations in soil loss by concentrated flow erosion on cropland soils in temperate environments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Evaporation of soil moisture is one of the most important processes affecting water availability in semiarid ecosystems. Biological soil crusts, which are widely distributed ground cover in these ecosystems, play a recognized role on water processes. Where they roughen surfaces, water residence time and thus infiltration can be greatly enhanced, whereas their ability to clog soil pores or cap the soil surface when wetted can greatly decrease infiltration rate, thus affecting evaporative losses. In this work, we compared evaporation in soils covered by physical crusts, biological crusts in different developmental stages and in the soils underlying the different biological crust types. Our results show that during the time of the highest evaporation (Day 1), there was no difference among any of the crust types or the soils underlying them. On Day 2, when soil moisture was moderately low (11%), evaporation was slightly higher in well‐developed biological soil crusts than in physical or poorly developed biological soil crusts. However, crust removal did not cause significant changes in evaporation compared with the respective soil crust type. These results suggest that the small differences we observed in evaporation among crust types could be caused by differences in the properties of the soil underneath the biological crusts. At low soil moisture (<6%), there was no difference in evaporation among crust types or the underlying soils. Water loss for the complete evaporative cycle (from saturation to dry soil) was similar in both crusted and scraped soils. Therefore, we conclude that for the specific crust and soil types tested, the presence or the type of biological soil crust did not greatly modify evaporation with respect to physical crusts or scraped soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Microbiotic crusts play an important role in arid and semi‐arid regions. Yet, very little information exists regarding the factors that impact their development. In an attempt to assess the main factors that may determine their growth, measurements of the amount of fines (silt and clay), rain, moisture content, wetness duration and wind erosion and deposition were carried out along a 12 station transect within a partially crusted dune field in the western Negev Desert and compared to the crust cover and chlorophyll content. Surface stability was the only variable that exhibited significant relationship with crust cover while daylight wetness duration exhibited strong positive relationship (r2 = 0·92–0·99) with the crust's chlorophyll content. The data point out that microbiotic crusts may serve as a useful biomarker for surface stability. While wetness duration and wind will control crust cover and the crust chlorophyll content in semi‐stable habitats (with absolute annual change in sand level of 2–3 mm), stable habitats (absolute change <1 mm) will be controlled primarily by moisture, while habitats with low surface stability (absolute change of tens and hundreds of millimeters) will be primarily controlled by wind. Furthermore, owing to the strong positive relationship between daylight wetness duration and the crust's chlorophyll content, the crust may serve as a useful biomarker for the quantification of surface wetness duration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A portable field wind tunnel was used to assess the sediment flux rates of loam and sand textured soils in the Mallee region of southeastern Australia. Three levels of crust disturbance (nil, moderate and severe) simulating stock trampling were investigated. The results demonstrated the importance of cryptogamic crusts in binding the soil surface and providing roughness after the soil was moderately disturbed. On the loamy soil, the crust helped maintain sediment flux rates below the erosion control target to 5 g m−1 s−1 for a 65 km h−1 wind measured at 10 m height. Once the crust was severely disturbed, sediment fluxes increased to 1·6 times the erosion target. On the sandy soil, even with no crust disturbance the sediment flux was 1·6 times the erosion control target. Disturbing the crust increased sediment fluxes to a maximum of 6·7 times the erosion control target. Removal of the crust also decreased the threshold wind velocity that resulted in an increase to the risk of erosion from <5 per cent to 20 per cent. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Severe dust storms in the Southern Aral Sea Basin have become common with the desiccation of the sea. The high incidence of dust in the area has had severe ecological consequences. Within the framework of efforts to reduce this phenomenon, deflatability as well as deflatability‐related characteristics of some prominent soils/sediment surfaces in the Southern Aral Sea Basin were examined. The materials included a salt crust from a developed Solonchak, a Takyr crust and a Takyr‐like soil, and salt crusts from undeveloped Solonchaks formed on the exposed bottom of the Aral Sea. Characteristics determined were particle size distribution, dry aggregate size distribution and salt, carbonate and organic carbon contents. Deflatability was examined using a suction type wind tunnel with a SENSIT‐type sensor to detect airborne unconsolidated material, on materials treated to different moisture levels and with a chemical stabilizer, and on restored crusts created from the unconsolidated materials. Fine sand dominates in the materials, and in the Takyr crust and Takyr‐like soils is accompanied by significant amounts of silt and clay. All materials contain moderate amounts of carbonate and are low in organic matter. All soils/sediments contain salts, but in the salt crusts of the Solonchaks the salt fraction dominates. They all have more than 50 per cent PM850 (particles with diameter <850 µm), indicating a relatively high deflatability potential. The materials from the Takyr crusts and Takyr‐like soil with a high proportion of fine aggregates had the lowest threshold friction velocities, while the salt crusts of the Solonchaks with a high proportion of coarse aggregates had the highest. This suggests that Takyrs and Takyr‐like soils are the most deflatable and Solonchak soils the least deflatable. These differences are attributed to the presence of salts that create stable, large aggregates in the Solonchak crusts. Wetting of the materials to three moisture levels considerably increased threshold friction velocity. The increase was most prominent in the salt‐rich materials, and was attributed to the rapid formation of surface films by drying in the course of the wind tunnel determinations. Applications of chemical stabilizers at two levels also considerably increased threshold friction velocity. On the restored crusts, threshold friction velocity dramatically increased, occasionally to non‐recordable values. This increase was monitored with both the salt crusts characteristic for the Solonchak soils and the fine‐grained crusts characteristic for the Takyr soils. The stability was attributed to the tightly packed salt particles in the salt crusts, and to the cohesive properties of the fine‐grained materials in the Takyr crusts. Once the crusts were ruptured, however, strong deflation commenced. These results suggest that by maintaining moisture in the soils/sediments (for example, by maintaining a high water table in the Amu‐Darya river flood plain) deflation can be reduced. By the same means, deflation can be reduced by creating new crusts or by preserving existing crusts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Crusts play a crucial role in the reduction or control of wind erosion. In this regard, the resilience and durability of crusts are of prime importance. Crusts have high resilience and durability against wind flow shear stresses; however, they are prone to abrasion induced by saltating particles. Therefore, estimating crust durability in abrasion rupture has practical importance. In this study, a cyanocrust and a biocemented sand crust were subjected to a controlled flux of saltating particles for different sandblasting periods to provide a framework for predicting crust rupture. The velocity and pre- and post-collision energy of the saltating particles were measured using high-speed photography. The changes in the strength of the crusts after different periods of sandblasting were determined using a scratch test. The results suggested that the average strength of the cyanocrust and biocemented sand crust became 0.25 and 0.7 of their corresponding initial values after 30 min of sandblasting. Also, the average stiffness of the cyanocrust and biocemented sand crust decreased to 0.5 and 0.9 of their initial values, respectively. Furthermore, the amount of impact energy absorbed by the crusts increased by the deterioration of the crusts. Compiling the results of the wind tunnel experiment and scratch tests yielded an exponential equation which can be used to estimate crust durability in a given condition of saltation. Based on this equation, the cyanocrust and biocemented sand crust will break down entirely after 23 and 449 min, respectively, at a wind velocity of 6.8 m/s and a saltation flux of 1 g/s/m.  相似文献   

7.
The arid Qaidam Basin is the largest (~3.88 × 104 km2) basin on the north‐eastern Tibetan Plateau. Wind erosion in the area has been regarded as an important trigger for intra‐basin tectonic balance upheaval, geomorphologic development and as a major supplier of dust to the Chinese Loess Plateau downwind. An initial estimate of the rate of wind erosion (Kapp et al., 2011) based on geological cross‐sections has suggested up to 3.2 × 104 km3 of sediments has been deflated over the past 2.8 Ma, lowering the landscape by an average of 0.29 mm/yr. In this paper we re‐evaluate this estimate by dating surface crusts present on three playas within the basin. Understanding the development of these playas is crucial to assessing the overall role of the wind in shaping the regional landscape because they are typically capped with a thick salt crust which effectively protects them from wind erosion. Optically stimulated luminescence (OSL) and U‐series dating from a pit section and from the top of a deep drill core, together with results from magnetostratigraphy and a climate proxy record correlated to the marine oxygen isotope record, are used here to determine the age of the playa plains and suggest that the salt crusts have an age of c. 0.1 Ma. This young age and the wide distribution of resistant thick salt crusts of the playa plains indicate a much lower degree of wind erosion than previously suggested. The crusts protect the surface from significant surface erosion (including sediment exhumation and unloading) and whilst some wind erosion does occur, it is unlikely to be sufficient to trigger tectonic uplift of the basin or to be a major dust source for the Loess Plateau as previously suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Biocrusts abound in southern Israel, covering the Hallamish dune field near Nizzana (NIZ) in the Negev (mean annual precipitation of 95 mm) and the coast of Nizzanim (NIM) near Ashdod (mean annual precipitation of 500 mm). While the hydrological response of the NIZ crust to natural rain events was thoroughly investigated, no data is available on the hydrological response of the NIM crust. Runoff was monitored in runoff plots during the years 2005–2008, and in addition, sprinkling experiments were carried out on NIM and NIZ crusts. For the evaluation of the possible factors that may control runoff initiation, fine content of the parent material, crust thickness, compressional strength, hydrophobicity, surface microrelief, organic matter, biomass (chlorophyll a and total carbohydrates) and the crust's species composition of NIM were studied and compared to that of NIZ. The data showed that in comparison to the NIZ crust that readily generated runoff, no runoff was produced by the NIM crust. This was so despite the fact that (1) Microculeus vaginatus predominated in both crusts, (2) the substantially higher rain intensities in NIM, (3) the greater thickness and higher chlorophyll content and (4) the lower microrelief at NIM in comparison to NIZ. The lack of runoff in NIM was explained by its low amounts of exopolysaccharides that did not suffice to affectively clog the surface and in turn to facilitate runoff initiation. The absence of runoff and its consequences on the NIM ecosystem are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Wind erosion characteristics of Sahelian surface types   总被引:1,自引:0,他引:1  
The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10?3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
Crust formation on basaltic lava flows dictates conditions of both flow cooling and emplacement. For this reason, flow histories are dramatically different depending on whether lava is transported through enclosed lava tubes or through open channels. Recent analog experiments in straight uniform channels (Griffiths et al. J Fluid Mech 496:33–62, 2003) have demonstrated that tube flow, dictated by a stationary surface crust, can be distinguished from a mobile crust regime, where a central solid crust is separated from channel walls by crust-free shear zones, by a simple dimensionless parameter ϑ, such that ϑ<25 produces tube flow and ϑ>25 describes the mobile crust regime. ϑ combines a previously determined parameter ψ, which describes the balance between the formation rate of surface solid and the shear strain that disrupts the solid crust, with the effects of thermal convection (described by the Rayleigh number Ra).Here we explore ways in which ϑ can be used to describe the behavior of basaltic lava channels. To do this we have extended the experimental approach to examine the effects of channel irregularities (expansions, contractions, sinuosity, and bottom roughness) on crust formation and disruption. We find that such changes affect local flow behavior and can thus change channel values of ϑ. For example, gradual widening of a channel results in a decrease in flow velocity that causes a decrease in ϑ and may allow a down-flow transition from the mobile crust to the tube regime. In contrast, narrowing of the channel causes an increase in flow velocity (increasing ϑ), thus inhibiting tube formation.We also quantify the fraction of surface covered by crust in the mobile crust regime. In shallow channels, variations in crust width (d c) with channel width (W) are predicted to follow d cW 5/3. Analysis of channelized lava flows in Hawaii shows crustal coverage consistent with this theoretical result along gradually widening or narrowing channel reaches. An additional control on crustal coverage in both laboratory and basaltic flows is disruption of surface crust because of flow acceleration through constrictions, around bends, and over breaks in slope. Crustal breakage increases local rates of cooling and may cause local blockage of the channel, if crusts rotate and jam in narrow channel reaches. Together these observations illustrate the importance of both flow conditions and channel geometry on surface crust development and thus, by extension, on rates and mechanisms of flow cooling. Moreover, we note that this type of analysis could be easily extended through combined use of FLIR and LiDAR imaging to measure crustal coverage and channel geometry directly.Editorial responsibility: A. Harris  相似文献   

13.
A conceptual model is described for the prediction of wind erosion rates dependent on the distribution of impact energy delivered to the surface by saltating grains, P[Ei], and the distribution of local surface strength, P[Es]. Methods are presented for the measurement of both distributions and consequent loss of material from the bed. It is concluded that saltating sand grains can rupture weak crusts under even moderate wind conditions, and that the rate of erosion will depend on the shape of the distribution tails. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
A wind tunnel study examined the effect of distributions of saltating particles on sediment surfaces which were characterized by distributions of their tensile strength. The sediments consisted of varying proportions of large sand‐sized particles with a fine particle cement. The energies of the impacting particles and the surface strengths were compared with the mass of material lost from the surface. It is important to consider distributions of parameters rather than mean values only, since abrasion and erosion may occur from surfaces not predicted from average strength and saltation velocities. At the impact velocities used in this study (mean velocity 4·4 m s?1, with standard deviation of 0·51), surfaces containing less than 12 per cent fine material were easily eroded, but insignificant erosion occurred when the fine particle content exceeded 60 per cent. Small amounts of cementing material were easily ruptured, allowing the large sand grains to be moved (largely in creep) by the bombarding particles. A significant amount of energy was lost to the bed. As the percentage of fine material increased, the surface became more difficult to break up and less energy was lost to the bed. The probability that erosion will occur for known energy distributions of impacting particles and surface strength can be calculated and the mass loss increases exponentially with a decrease in the percentage of fine cementing particles. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The surface susceptibility to erosion (erodibility) is an important component of soil erosion models. Many studies of wind erosion have shown that even relatively small changes in surface conditions can have a considerable effect on the temporal and spatial variability of dust emissions. One of the main difficulties in measuring erodibility is that it is controlled by a number of highly variable soil factors. Collection of these data is often limited in scale because in situ measurements are labour‐intensive and very time‐consuming. To improve wind erosion model predictions over several spatial and temporal scales simultaneously, there is a requirement for a non‐invasive approach that can be used to rapidly assess changes in the compositional and structural nature of a soil surface in time and space. Spectral reflectance of the soil surface appears to meet these desirable requirements and it is controlled by properties that affect the soil erodibility. Three soil surfaces were modified using rainfall simulation and wind tunnel abrasion experiments. Observations of those changes were made and recorded using digital images and on‐nadir spectral reflectance. The results showed clear evidence of the information content in the spectral domain that was otherwise difficult to interpret given the complicated interrelationships between soil composition and structure. Changes detected at the soil surface included the presence of a crust produced by rainsplash, the production of loose erodible material covering a rain crust and the selective erosion of the soil surface. The effect of rainsplash and aeolian abrasion was different for each soil tested and crust abrasion was shown to decrease as rainfall intensity increased. The relative contributions of the eroded material from each soil surface to trapped mixtures of material assisted the erodibility assessment. Ordination analyses within each of two important soil types explained significant amounts of the variation in the reflectance of all wavebands by treatments of the soil and hence changes in the soil surface. The results show that soil surface conditions within a soil type are an underestimated source of variation in the characterization of soil surface erodibility and in the remote sensing of soil. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Giora J. Kidron 《水文研究》2015,29(7):1783-1792
Contrary to humid areas where runoff takes place following the saturation of the soil column, runoff in arid and semiarid zones takes place when rain intensities exceed the infiltration capability of the upper soil crust, whether physical crust or microbiotic crust (MC). This type of overland flow, known as Hortonian overland flow (HOF), is not fully understood, especially in the case of MC. In particular, little is known regarding the effect of crust thickness and its fine (silt and clay) content on runoff generation, with some scholars claiming that runoff generation is positively correlated with crust thickness and fine content. In an attempt to determine the effect of crust thickness and to assess the role played by the silt and clay on runoff generation, a set of field and lab experiments were undertaken on MCs inhabiting sand dunes in the Negev Desert (Israel). These included sprinkling experiments coupled with measurements of the physical (thickness, silt and clay) and biological (chlorophyll, protein, total carbohydrates) properties of 0.5–10‐mm‐thick crusts. The data showed that runoff generation took place on surfaces as thin as ~0.5–0.7 mm only, and was not correlated with the fine (silt and clay) content. The implications for HOF and for arid ecosystems are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Ferromanganese crusts (hereinafter crusts) form in aerobic environment and the environmental oxida-tion degree is recorded by the redox sensitive element Co in the crusts. The ages of the layers from the surface to bottom of the crusts are determined, and main element contents at high resolution along the depth sections of three crusts from the Pacific Ocean are analyzed by an electron microprobe. Thus the variations of Co/(Fe Mn) and Co/(Ni Cu) with age/depth of the crust layers are obtained. By comparing the ratios of Co/(Fe Mn) and Co/(Ni Cu) with the δ 18O curves of the Pacific benthic foraminifera, we find that these two ratios can reflect the variation of the environmental oxidation state under which the crust layers deposit. The evolution of the oxidation degree reflected by the two indexes resembles the evo-lution of temperature since the Oligocene reflected by the δ 18O curves of the Pacific benthic foraminif-era. This suggests that the crust-forming environment after the Oligocene is controlled mainly by the oxygen-rich bottom water originated from the Antarctic bottom water (AABW). However it is not the case prior to the Oligocene. Furthermore it suggests that the environmental oxidation degree controls the formation of the crusts and the Co contents in the crusts. This explains why the Co contents in the crusts increase with time up to now.  相似文献   

19.
Playa systems are driven by evaporation processes, yet the mechanisms by which evaporation occurs through playa salt crusts are still poorly understood. In this study we examine playa evaporation as it relates to land surface energy fluxes, salt crust characteristics, groundwater and climate at the Salar de Atacama, a 3000 km2 playa in northern Chile containing a uniquely broad range of salt crust types. Land surface energy budget measurements were taken at eight representative sites on this playa during winter (August 2001) and summer (January 2002) seasons. Measured values of net all-wave radiation were highest at vegetated and rough halite crust sites and lowest over smooth, highly reflective salt crusts. Over most of the Salar de Atacama, net radiation was dissipated by means of soil and sensible heat fluxes. Dry salt crusts tended to heat and cool very quickly, whereas soil heating and cooling occurred more gradually at wetter vegetated sites. Sensible heating was strongly linked to wind patterns, with highest sensible heat fluxes occurring on summer days with strong afternoon winds. Very little energy available at the land surface was used to evaporate water. Eddy covariance measurements could only constrain evaporation rates to within 0.1 mm d−1, and some measured evaporation rates were less than this margin of uncertainty. Evaporation rates ranged from 0.1 to 1.1 mm d−1 in smooth salt crusts around the margin of the salar and from 0.4 to 2.8 mm d−1 in vegetated areas. No evaporation was detected from the rugged halite salt crust that covers the interior of the salar, though the depth to groundwater is less than 1 m in this area. These crusts therefore represent a previously unrecorded end member condition in which the salt crusts form a practically impermeable barrier to evaporation.  相似文献   

20.
Structure and composition of the continental crust in East China   总被引:14,自引:0,他引:14  
Crustal structures of nine broad tectonic units in China, except the Tarim craton, are derived from 18 seismic refraction profiles including 12 geoscience transects. Abundances of 63 major, trace and rare earth elements in the upper crust in East China are estimated. The estimates are based on sampling of 11 451 individual rock samples over an area of 950 000 km2, from which 905 large composite samples are prepared and analyzed by 13 methods. The middle, lower and total crust compositions of East China are also estimated from studies of exposed crustal cross sections and granulite xenoliths and by correlation of seismic data with lithologies. All the tectonic units except the Tarim craton and the Qinling orogen show a four-layered crustal structure, consisting of the upper, middle, upper lower, and lowermost crusts. P-wave velocities of the bulk lower crust and total crust are 6.8–7.0 and 6:4–6.5 km/s, respectively. They are slower by 0.2–0.4 km/s than the global averages. The bulk lower crust is suggested to be intermediate with 58% SiO2 in East China. The results contrast with generally accepted global models of mafic lower crusi. The proposed total crust composition in East China is also more evolved than previous estimates and characterized by SiO2=64%, a significant negative Eu anomaly (Eu/Eu* = 0.80), deficits in Sr and transition metals, a near-arc magma La/Nd ratio (3.0), and a calculatedμ(238U/204Pb) value of 5. In addition, it has the following ratios of element pairs exhibiting similar compatibility, which are identical or close to the primitive mantle values: Zr/Hf=37, Nb/Ta=17.5, Ba/Th=87, K/Pb=0.12x104, Rb/Cs=25, Ba/Rb=8.94, Sn/Sm=0.31, Se/Cd=1.64, La/ As=10.3, Ce/Sb=271, Pb/Bi=57, Rb/TI=177, Er/Ag=52, Cu/Au=3.2×104, Sm/Mo=7.5, Nd/W=40, CI/Li=10.8, F/Nd=21.9, and La/B=1.8. Project supported by the National Natural Science Foundation of China (Grant Nos. 49625305, 49573183, 49673184, 49794043), the State Comission of Education, the Ministry of Geology and Mineral Resources of China (Grant No. 850514), the Open Laboratory of Constitution, Interaction and Dynamics of the Crust-Mantle System, and the Alexander-von-Humboldt Foundation of Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号