首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
This paper examines the processes responsible for the morphodynamics of an intertidal swash bar at Skallingen, Denmark, during seven successive storms (one with a large surge of +3·02 m DNN). During this period a subtidal bar migrated landward onto the foreshore and continued to migrate across the intertidal zone as a swash bar. The onshore migration of the inner subtidal bar resulted from the erosion of sediment from the upper foreshore and dune ramp during the large storm surge that was transported seaward, causing the landward displacement of the bar through accretion on the landward slope. The magnitude and direction of suspended sediment transport within the intertidal zone, and more specifically at and close to the crest of the swash bar, varied with the ratio of both the significant (Hs) and average (Havg) wave heights to the water depth (hcr) at the swash bar crest (the local depth minimum). The transition between onshore and offshore suspended sediment transport was associated with the average wave of the incident distribution breaking on the swash bar crest (Havgh ≈ 0·33). While the onshore‐directed transport was largest at infragravity frequencies, sediment resuspension was best explained by the skewed accelerations under the surf bores. Offshore transport was dominated by the cross‐shore mean currents (undertow) that developed when the significant wave of the distribution broke on the swash bar crest (Hsh ≈ 0·33) and weakened as the average wave of the distribution started to break at the crest (Havgh ≈ 0·33) and the surf zone approached saturation. In contrast to subtidal bars, the swash bar at Skallingen exhibited a divergent behaviour with respect to the cross‐shore position of the breaker zone, migrating onshore when the average wave broke seaward of the crest and migrating offshore when the average wave broke landward of the crest. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
This study analyses beach morphological change during six consecutive storms acting on the meso‐tidal Faro Beach (south Portugal) between 15 December 2009 and 7 January 2010. Morphological change of the sub‐aerial beach profile was monitored through frequent topographic surveys across 11 transects. Measurements of the surf/swash zone dimensions, nearshore bar dynamics, and wave run‐up were extracted from time averaged and timestack coastal images, and wave and tidal data were obtained from offshore stations. All the information combined suggests that during consecutive storm events, the antecedent morphological state can initially be the dominant controlling factor of beach response; while the hydrodynamic forcing, and especially the tide and surge levels, become more important during the later stages of a storm period. The dataset also reveals the dynamic nature of steep‐sloping beaches, since sub‐aerial beach volume reductions up to 30 m3/m were followed by intertidal area recovery (–2 < z < 3 m) with rates reaching ~10 m3/m. However, the observed cumulative dune erosion and profile pivoting imply that storms, even of regular intensity, can have a dramatic impact when they occur in groups. Nearshore bars seemed to respond to temporal scales more related to storm sequences than to individual events. The formation of a prominent crescentic offshore bar at ~200 m from the shoreline appeared to reverse the previous offshore migration trend of the inner bar, which was gradually shifted close to the seaward swash zone boundary. The partially understood nearshore bar processes appeared to be critical for storm wave attenuation in the surf zone; and were considered mainly responsible for the poor interpretation of the observed beach behaviour on the grounds of standard, non‐dimensional, morphological parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Multiple intertidal bars and troughs, often referred to as ‘ridges and runnels’, are significant features on many macrotidal sandy beaches. Along the coastline of England and Wales, they are particularly prevalent in the vicinity of estuaries, where the nearshore gradient is gentle and a large surplus of sediment is generally present. This paper examines the dynamics of such bar systems along the north Lincolnshire coast. A digital elevation model of the intertidal morphology obtained using LIDAR demonstrates that three to five intertidal bars are consistently present with a spacing of approximately 100 m. The largest and most pronounced bars (height = 0·5–0·8 m) are found around mean sea level, whereas the least developed bars (height = 0·2–0·5 m) occur in the lower intertidal zone. Annual aerial photographs of the intertidal bar morphology were inspected to try to track individual bars from year to year to derive bar migration rates; however, there is little resemblance between concurrent photographs, and ‘resetting’ of the intertidal profile occurs on an annual basis. Three‐dimensional beach surveys were conducted monthly at three locations along the north Lincolnshire coast over a one‐year period. The intertidal bar morphology responds strongly to the seasonal variation in the forcing conditions, and bars are least numerous and flattest during the more energetic winter months. Morphological changes over the monthly time scale are strongly affected by longshore sediment transport processes and the intertidal bar morphology can migrate along the beach at rates of up to 30 m per month. The behaviour of intertidal bars is complex and varies over a range of spatial and temporal scales in response to a combination of forcing factors (e.g. incident wave energy, different types of wave processes, longshore and cross‐shore sediment transport), relaxation time and morphodynamic feedback. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Previous studies devoted to the morphology and hydrodynamics of ridge and runnel beaches highlight characteristics that deviate from those initially postulated by King and Williams (Geographical Journal, 1949, vol. 113, 70–85) and King (Beaches and Coasts, 1972, Edward Arnold). Disagreements on the morphodynamics of these macrotidal beaches include the position of the ridges relative to the mean neap and spring tide levels, the variation in the height of the ridges across the intertidal profile and, most importantly, whether the ridges are formed by swash or surf zone processes. The morphological characteristics of ridge and runnel beaches from three locations with varying wave, tidal and geomorphic settings were investigated to address these disagreements. Beach profiles from each site were analysed together with water‐level data collected from neighbouring ports. It was found that the ridges occur over the entire intertidal zone. On one site (north Lincolnshire, east England), the ridges are uniformly distributed over the intertidal beach, whereas on the two other sites (Blackpool beach, northwest England, and Leffrinckoucke beach, north France) there is some indication that the ridges appear to occur at preferential locations. Most significantly, the locations of the ridge crests were found to be unrelated to the positions on the intertidal profile where the water level is stationary for the longest time. It was further found that the highest ridges generally occur just above mid‐tide level where tidal non‐stationarity is greatest. These findings argue against the hypothesis that the ridges are formed by swash processes acting at stationary tide levels. It is tentatively suggested that the ridges are the result of a combination of swash and surf zone processes acting across the intertidal zone. Elucidation of the morphodynamic roles of these two types of processes, and other processes such as strong current flows in the runnels, requires further comprehensive field measurements complemented by numerical modelling. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A new field-based parameterisation (‘shape function’) describing the distribution of cross-shore suspended sediment transport across a beach profile is presented. Time-averaged and depth-integrated suspended sediment fluxes were measured over 39 tides at Sennen Cove, Cornwall, UK, for a range of wave conditions (offshore significant wave heights 0.1–2.5 m). The suspended sediment flux data were heuristically separated into four transport components: (1) mean flux in the surf/shoaling zone; (2) oscillatory flux in the surf/shoaling zone; (3) onshore flux in the swash/inner surf zone and (4) offshore flux in the swash/inner surf zone. Each of these transport components was related to the local water depth (h) normalised by the breakpoint depth (hb) and the four resulting suspended transport shape functions were combined to form a total suspended load shape function. Each shape function component is scaled independently by the wave energy level through hb. The total suspended load shape function predicts onshore sediment transport under low-energy conditions, with peaks at the breakpoint and in the swash zone, in agreement with the field observations. Under high-energy conditions the total suspended load shape function predicts onshore transport in the shoaling zone, offshore transport in the surf zone and onshore transport in the inner swash zone.  相似文献   

7.
In this study, an intertidal bar and trough system on the beach of Noordwijk, The Netherlands was monitored over a 15‐month period in order to examine the daily to seasonal sequential cross‐shore behaviour and to establish which conditions force or interrupt this cyclic bar behaviour. The beach morphology (bars and troughs) was classified from low‐tide Argus video images based on surface composition. From the classified images, time series of the landward boundary of the bar and of the trough were extracted. The time series of the alongshore‐averaged boundary positions described sawtooth motion with a period between 1 and 4 months, comprising gradual landward migration followed by abrupt seaward shifts. The abrupt seaward shift appeared to be a morphological reset induced by storm events, which lasted at least 30 h with a large average root‐mean‐square wave height (≥2 m) and offshore surge level (≥0·5 m), and a small trough (<20 m wide) in the pre‐storm beach morphology. The time series of the boundary positions exhibited very little longer (seasonal) scale variability, but somewhat larger smaller (daily) scale variability. The bar boundary was found to be more dynamic than the trough boundary. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
There is a paucity of field data to describe the transition in nearshore circulation between alongshore, meandering and rip current systems. A combination of in‐situ current meters and surf zone drifters are used to characterize the nearshore circulation over a transverse bar and rip morphology at Pensacola Beach, Florida in the presence of relatively low energy oblique waves. Current speeds vary in response to the relative wave height ratio (Hs/h), which defines the degree and extent of breaking over the shoal. In the absence of wave breaking the nearshore circulation was dominated by an alongshore current driven by the oblique waves. As waves begin to break across the shoal (0.2<Hs/ h<0.5) the nearshore circulation is characterized by a meandering alongshore current. As conditions became more dissipative (Hs/h>0.5), the meandering current is replaced by an unsteady rip circulation that moves offshore between the shoals before turning alongshore in the direction of wave advance outside the surf zone. The increase in wave dissipation is associated with an increase in very low frequency (VLF) variations in the current speed across the shoal and in the rip channel that caused the circulation to oscillate between an offshore and an alongshore flow. The unsteady nature of the nearshore circulation is responsible for 55% of all surf zone exits under these more dissipative conditions. In contrast, only 29% of the drifters released from the shoal exited the surf zone and bypassed the adjacent shoal with the alongshore‐meandering current. While the currents had a low velocity (maximum of ~0.4 m s‐1) and would not pose a significant hazard to the average swimmer, the results of this study suggest that the transverse bar and rip morphology is sufficient to create an alongshore variation in wave dissipation that forces alongshore meandering and low‐energy rip circulation systems under oblique wave forcing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Berm formation and morphological development of the beach face have been observed during a neap–neap tidal cycle on the gently sloping and accreting beach at Vejers, Denmark. During the field campaign, an intertidal bar migrated onshore and stabilized as a berm on the foreshore. A new intertidal bar occurred on the lower beach face, migrated onshore on the rising tide and finally merged with the pre‐existing berm. As the tide continued to rise, the new berm translated further onshore as an intertidal bar to the uppermost part of the foreshore. The sediment transport during the berm transition was onshore directed in the upper swash and offshore directed in the lower swash. This berm development can be described through both the neap‐berm, ridge‐and‐runnel and berm‐ridge development concepts proposed by Hine (Sedimentology 1979; 26: 333–351), and all three stages were observed during only three tidal cycles. The main factors controlling this fast transformation were the gentle slope of the cross‐shore profile, rapid water level translation rates, substantial swash overtopping of the berm, and low infiltration rates. Despite the onshore migration of intertidal bars and berm formation, no net foreshore accretion took place during the field campaign. This was largely due to the formation of rip channels with strong rip currents cutting through the intertidal bars and the berm, which acted as a sediment drain in the profile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The intertidal drainage channels on a macrotidal bar–trough (ridge‐and‐runnel) beach were monitored during a 17‐day survey. Type 1 channels were persistent, dominantly longshore systems essentially limited to the wide intertidal zone between mean high and low water neap tidal levels. The cumulative length of this channel type fluctuated as a function of topographically controlled through‐flow or flow impedance in troughs, and showed no correlation with the semi‐lunar tidal cycle. Smaller, ephemeral type 2 channels appeared as dominantly cross‐shore systems incising bars on the narrower upper and lower beach zones during spring tides. They disappeared during neap tides through infill by waves and aeolian activity. The only significant phase of type 1 channel mobility occurred during a brief moderate‐energy storm at the start of the survey. The effect of this mobility on beach morphology was inextricably linked to that of waves and currents. Meander bend migration, forced by wave‐ and longshore‐current‐induced migration of a bar during the storm, resulted in important but highly localized morphological change that was only a minor part of an irregular saw‐tooth pattern of change that affected the entire beach profile, and that was largely controlled by wave processes and longshore currents. The flow velocities in channels on this beach are too weak to generate the formation and longshore migration of high‐energy bedforms. Channel mobility and impact on beach morphology are expected to increase under storm conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A 15‐month data set of daily time‐averaged video images (Argus) has been analyzed to describe the spatial and temporal variability of the rip channels on a multiple‐barred coast at Noordwijk aan Zee, The Netherlands. The landward boundary of the intertidal bars and a proxy of the subtidal bar crest, defined as the intertidal and subtidal bar lines respectively, were derived from the Argus images. Local seaward‐directed deviations of the bar lines represent the cross‐shore and alongshore locations of the rip channels. The average intertidal rip spacing ( ) was 243 m, but the rips were not spaced regularly (σλ/ = 0.47). Some intertidal rips were observed to fill up during falling tide, but the majority remained open. The filled intertidal rip channels had more landward positions and migrated more slowly (2.4 versus 4.6 m/day) in the alongshore direction than the open intertidal rip channels. The number and the alongshore migration rate of open intertidal rip channels increased with the preceding wave heights (r = 0.26, p < 0.01) and alongshore component of the offshore wave power (r = 0.25, p < 0.01), respectively. The shape of the intertidal bar lines was similar to the subtidal bar line shape, suggesting that the intertidal morphology is coupled to the subtidal alongshore variability. The phase of two bar lines could vary from in phase (0°) to out of phase (180°). The phase changes gradually, due to different alongshore migration rates of the intertidal and subtidal bar lines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Intertidal bars are common in mesotidal/macrotidal low-to-moderate energy coastal environments and an understanding of their morphodynamics is important from the perspective of both coastal scientists and managers. However, previous studies have typically been limited by considering bar systems two-dimensionally, or with very limited alongshore resolution. This article presents the first multi-annual study of intertidal alongshore bars and troughs in a macrotidal environment using airborne LiDAR (light detection and ranging) data to extract three-dimensional (3D) bar morphology at high resolution. Bar and trough positions are mapped along a 17.5 km stretch of coastline in the northwest of England on the eastern Irish Sea, using eight complete, and one partial, LiDAR surveys spanning 17 years. Typically, 3–4 bars are present, with significant obliquity identified in their orientation. This orientation mirrors the alignment of waves from the dominant south-westerly direction of wave approach, undergoing refraction as they approach the shoreline. Bars also become narrower and steeper as they migrate onshore, in a pattern reminiscent of wave shoaling. This suggests that the configuration of the bars is being influenced by overlying wave activity. Net onshore migration is present for the entire coastline, though rates vary alongshore, and periods of offshore migration may occur locally, with greatest variability between northern and southern regions of the coastline. This work highlights the need to consider intertidal bar systems as 3D, particularly on coastlines with complex configurations and bathymetry, as localized studies of bar migration can overlook 3D behaviour. Furthermore, the wider potential of LiDAR data in enabling high-resolution morphodynamic studies is clear, both within the coastal domain and beyond. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Nearshore bars play a pivotal role in coastal behaviour, helping to protect and restore beach systems particularly in post‐storm conditions. Examination of bar behaviour under various forcing conditions is important to help understand the short‐ to medium‐term evolution of sandy beach systems. This study carried out over a nine‐week period examines, the behaviour of three intertidal bars along a high energy sandy beach system in northwest Ireland using high‐frequency topographic surveys and detailed nearshore hydrodynamic modelling. Results show that, in general, there was onshore migration for all the bars during the study period, despite the variability observed between bars, which was driven mostly by wave dominated processes. Under the prevailing conditions migration rates of up to 1.83 m day?1 and as low as 0.07 m day?1 were observed. During higher wave energy events the migration rates of the bars decelerated in their onshore route, however, under lower wave energy conditions, they quickly accelerated maintaining their shoreward migration direction. Tidal influence appears to be subordinate in these conditions, being restricted to moderating the localized wave energy at low tides and in maintaining runnel configurations providing accommodation space for advancing slip faces. The study highlights the intricate behavioural patterns of intertidal bar behaviour along a high energy sandy coastline and provides new insights into the relative importance of wave and tidal forcing on bar behaviour over a relatively short time period. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Field measurements of wave ripples and megaripples were made with a Sand Ripple Profiler in the surf and shoaling zones of a sandy macrotidal dissipative beach at Perranporth, UK in depths 1–6 m and significant wave heights up to 2.2 m. A frequency domain partitioning approach allowed quantification of height (η), length (λ) and migration rate of ripples and megaripples. Wave ripples with heights up to 2 cm and wavelengths ~20 cm developed in low orbital velocity conditions (u m?<?0.65 m/s) with mobility number ψ?<?25. Wave ripple heights decreased with increasing orbital velocity and were flattened when mean currents were >0.1 m/s. Wave ripples were superimposed on top of megaripples (η?=?10 cm, λ?=?1 m) and contributed up to 35 % of the total bed roughness. Large megaripples with heights up to 30 cm and lengths 1–1.8 m developed when the orbital velocity was 0.5–0.8 m/s, corresponding to mobility numbers 25–50. Megaripple heights and wavelengths increased with orbital velocity but reduced when mean current strengths were >0.15 m/s. Wave ripple and megaripple migrations were generally onshore directed in the shoaling and surf zones. Onshore ripple migration rates increased with onshore-directed (+ve) incident wave skewness. The onshore migration rate reduced as offshore-directed mean flows (undertow) increased in strength and reached zero when the offshore-directed mean flow was >0.15 m/s. The migration pattern was therefore linked to cross-shore position relative to the surf zone, controlled by competition between onshore-directed velocity skewness and offshore-directed mean flow.  相似文献   

16.
Detailed measurements of three-dimensional beach cusp morphology were made on a steep gradient, low energy, microtidal beach in Perth, Western Australia. During the field campaign a variety of wave conditions and tidal ranges were experienced, and these differing hydrodynamic conditions were reflected in a consistent pattern of morphological changes to the beach cusp system. A useful parameter to delineate between trends of cusp destruction and re-formation appeared to be the surf similarity parameter ξ = tan β/√I0/L0, where H0 is offshore wave height, L0 is deep water wave length and tan β is beach gradient. For ξ < 1·2 the beach cusps were planed off, whereas cusp morphology was enhanced when ξ > 1·2. A small storm was experienced at the start of the field campaign period and resulted in considerable erosion of the beach face. The cusp morphology across the lower beachface was destroyed, but a subtle remnant of the pre-storm cusp morphology was preserved on the upper beachface. When cusps reformed after the storm, under the influence of declining wave conditions, they appeared at the same location and with the same dimensions as the pre-storm cusp morphology. Hence, it is considered that the cusp re-formation was controlled more by the antecedent morphology than the hydrodynamic conditions. This indicates that positive feedback between swash hydrodynamics and beachface morphology, necessary to form beach cusps, does not require a large variation in relief. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
The role of wave forcing on the main hydro-morphological dynamics evolving in the shallow waters of the nearshore and at river mouths is analyzed. Focus is mainly on the cross-shore dynamics that evolve over mildly sloping barred, dissipative sandy beaches from the storm up to the yearly timescale, at most. Local and non-local mechanisms as well as connections across three main inter-related subsystems of the nearshore – the region of generation and evolution of nearshore bars, river mouths and the swash zone – are analyzed. The beach slope is a major controlling parameter for all nearshore dynamics. A local mechanism that must be properly described for a suitable representation of wave-forced dynamics of all such three subsystems is the proper correlation between orbital velocity and sediment concentration in the bottom boundary layer; while specific dynamics are the wave–current interaction and bar generation at river mouths and the sediment presuspension at the swash zone. Fundamental non-local mechanisms are both infragravity (IG) waves and large-scale horizontal vortices (i.e. with vertical axes), both influencing the hydrodynamics, the sediment transport and the seabed morphology across the whole nearshore. Major connections across the three subsystems are the upriver propagation of IG waves generated by breaking sea waves and swash–swash interactions, the interplay between the swash zone and along-river-flank sediment transport and the evolution of nearshore sandbars. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Microorganisms are a ubiquitous feature of most hard substrata on Earth and their role in the geomorphological alteration of rock and stone is widely recognized. The role of microorganisms in the modification of engineering materials introduced into the intertidal zone through the construction of hard coastal defences is less well understood. Here we use scanning electron microscopy (SEM) to examine microbial colonization and micro‐scale geomorphological features on experimental blocks of limestone, granite and marine concrete after eight months' exposure in the intertidal zone in Cornwall, UK. Significant differences in the occurrence of microbial growth features, and micro‐scale weathering and erosion features were observed between material types (ANOVA p < 0·000). Exposed limestone blocks were characterized by euendolithic borehole erosion (99% occurrence) within the upper 34·0 ± 12·3 µm of the surface. Beneath the zone of boring, inorganic weathering (chemical dissolution and salt action) had occurred to a depth of 125·0 ± 39·0 µm. Boring at the surface of concrete was less common (27% occurrence), while bio‐chemical crusting was abundant (94% occurrence, mean thickness 45·1 ± 27·7 µm). Crusts consisted of biological cells, salts and other chemical precipitates. Evidence of cryptoendolithic growth was also observed in limestone and concrete, beneath the upper zone of weathering. On granite, biological activity was restricted to thin epilithic films (<10 µm thickness) with some limited evidence of mechanical breakdown. Results presented here demonstrate the influence of substratum lithology, hardness and texture on the nature of early micro‐scale colonization, and the susceptibility of different engineering materials to organic weathering and erosion processes in the intertidal zone. The implications of differences in initial biogeomorphic responses of materials for long‐term rock weathering, ecology and engineering durability are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Ocean Dynamics - The mutual feedback between the swash zone and the surf zone is known to affect large-scale morphodynamic processes such as breaker bar migration on sandy beaches. To fully resolve...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号