首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluctuations in relative sea level, tectonic movement, and sedimentation during the late Pleistocene to Holocene in the Hisarönü Gulf (SE Aegean Sea) and surrounding area were investigated with a high‐resolution geophysical survey and underwater archaeological observations. The Hisarönü Gulf has been affected by vertical tectonic movements and rising sea level following the last glacial period (20,000 yr B.P.). High‐resolution seismic data were interpreted to reveal the structure of the late Pleistocene to Holocene deposits and determine the location of the paleoshoreline. In order to describe the relative rise of sea level, principles of sequence stratigraphy were used for the late Pleistocene to Holocene transition, and submerged archaeological remains and bioerosional indicators were used for the late Holocene period. A comparison of archaeological observations in the study area with the known regional sea level curve indicates that the relative rise in sea level for the late Holocene is, for the most part, due to the tectonic subsidence of the coastal plain. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Northumberland lies in the transition between Holocene emergence and submergence and is thus a critical zone for testing models of isostatic rebound. We have collected data from this area to reconstruct relative sea‐level changes and lateral coastline movements for the last 14000 y. These are deposits from tidal marsh, back‐barrier wetland and terrestrial environments producing 47 sea‐level index points from 12 sites. There is no unequivocal evidence for Late Devensian sea levels above present and the reliable sea‐level index points are restricted between −6 m and +2.5 m relative to present and 9.0–2.5 kyr cal. BP. Analysis of these quantifies differential responses to glacio‐ and hydroisostatic rebound, with the northern sites recording a mid‐Holocene sea‐level maximum ca. 2.5 m above present, whereas the southern sites show a maximum ca. 0.5 m above present. These observations show a reasonable fit with the predictions from quantitative models of glacio and hydroisostatic rebound, but there is currently no unique solution of Earth and ice model parameters that will explain all the sea‐level observations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
This study addresses gaps in understanding the relative roles of sea‐level change, coastal geomorphology and sediment availability in driving beach erosion at the scale of individual beaches. Patterns of historical shoreline change are examined for spatial relationships to geomorphology and for temporal relationships to late‐Holocene and modern sea‐level change. The study area shoreline on the north‐east coast of Oahu, Hawaii, is characterized by a series of kilometre‐long beaches with repeated headland‐embayed morphology fronted by a carbonate fringing reef. The beaches are the seaward edge of a carbonate sand‐rich coastal strand plain, a common morphological setting in tectonically stable tropical island coasts. Multiple lines of geological evidence indicate that the strand plain prograded atop a fringing reef platform during a period of late‐Holocene sea‐level fall. Analysis of historical shoreline changes indicates an overall trend of erosion (shoreline recession) along headland sections of beach and an overall trend of stable to accreting beaches along adjoining embayed sections. Eighty‐eight per cent of headland beaches eroded over the past century at an average rate of ?0·12 ± 0·03 m yr?1. In contrast, 56% of embayed beaches accreted at an average rate of 0·04 ± 0·03 m yr?1. Given over a century of global (and local) sea‐level rise, the data indicate that embayed beaches are showing remarkable resiliency. The pattern of headland beach erosion and stable to accreting embayments suggests a shift from accretion to erosion particular to the headland beaches with the initiation of modern sea‐level rise. These results emphasize the need to account for localized variations in beach erosion related to geomorphology and alongshore sediment transport in attempting to forecast future shoreline change under increasing sea‐level rise.  相似文献   

4.
We present estimates for late Holocene relative sea level change along the Tyrrhenian coast of Italy based on morphological characteristics of eight submerged Roman fish tanks (piscinae) constructed between the 1st century B.C. and the 2nd century A.D. Underwater geomorphological features and archaeological remains related to past sea level have been measured and corrected using recorded tidal values. We conclude that local sea level during the Roman period did not exceed 58 ± 5 cm below the present sea level. These results broadly agree with previous observations in the region but contrast with recent analysis that suggests a significantly larger sea level rise during the last 2000 years. Using a glacial isostatic adjustment model, we explain how regional sea level change departs from the eustatic component. Our calculation of relative sea level during the Roman period provides a reference for isolating the long‐wavelength contribution to sea level change from secular sea level rise. Precise determination of sea level rise in the study area improves our understanding of secular, instrumentally observed, variations across the Mediterranean. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium‐series dates obtained and subsequently analysed. Sea‐level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age–depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 ± 50 yr bp ; accretion rates average 5·65 m kyr?1. The barrier reef consists of >30 m thick Holocene coralgal and microbial successions. Holocene barrier‐reef growth began 10 030 ± 50 yr bp and accretion rates average 6·15 m kyr?1. The underlying Pleistocene reef formed 116 900 ± 1100 yr bp , i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0·05 to 0·14 m kyr?1. In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sea‐level changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier‐reef systems in Tahiti and Mayotte exhibit more differences than similarities.  相似文献   

6.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The architectural framework and Holocene evolution of the Zeballos fjord‐head delta on west‐central Vancouver Island was established through a multidisciplinary field‐based study. The Zeballos delta is a composite feature, consisting of an elevated, incised, late Pleistocene delta and an inset Holocene delta graded to present sea level. Both deltas have a classic Gilbert‐type tripartite architecture, with nearly flat topset and bottomset units and an inclined foreset unit. Time domain electromagnetic (TDEM) and ground‐penetrating radar (GPR) surveys, borehole data, and gravel pit exposures provided information on the internal form, lithologies and substrate of both deltas. Both sets of deltaic deposits coarsen upward from silt in the bottomset unit to gravel in the topset unit. The TDEM survey revealed a highly irregular, buried bedrock surface, ranging from 20 m to 190 m in depth, and it delineated saltwater intrusion into the deltaic sediments. Late Quaternary sea‐level change at Zeballos was inferred from delta morphology and the GPR survey. The elevated, late Pleistocene delta was constructed when the sea was about 21 m higher relative to the land than it is today. It was dissected when sea‐level fell rapidly as a result of glacio‐isostatic rebound. Relative sea‐level reached a position about 20 m below the present datum during the early Holocene. Foreset beds that overlap and progressively climb in a seaward direction and topset beds that thicken to 26 m landward imply that the delta aggraded and prograded into Zeballos Inlet during the middle and late Holocene transgression. Sea‐level may have risen above the present datum during the middle Holocene, creating a delta plain at about 4 m a.s.l. Remnants of this surface are preserved along the valley margins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   

10.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   

11.
Baeteman, C., Waller, M. & Kiden, P. 2011: Reconstructing middle to late Holocene sea‐level change: A methodological review with particular reference to ‘A new Holocene sea‐level curve for the southern North Sea’ presented by K.‐E. Behre. Boreas, 10.1111/j.1502‐3885.2011.00207.x. ISSN 0300‐9483. A number of disciplines are involved in the collection and interpretation of Holocene palaeoenvironmental data from coastal lowlands. For stratigraphic frameworks and the assessment of relative sea‐level (RSL) change, many non‐specialists rely on existing regional models. It is, however, important that they are aware of major developments in our understanding of the factors controlling coastal change and of the potential sources of error in sea‐level reconstructions. These issues are explored through a critical evaluation of a new sea‐level curve presented by Behre (2003, 2007) for the southern North Sea. In contrast to most sea‐level curves published from this region over the last 20 years, the curve shows strong fluctuations that are interpreted as representing vertical movements of sea level. We present a detailed examination of the data used by Behre. From this analysis it is clear that many of the data points used are unsuitable for high‐resolution (centimetre or decimetre) sea‐level reconstruction. This paper also gives an overview of possible sources of error with respect to the age and altitude of sea‐level index points and of changes in our understanding of the processes that underpin the interpretation of the organic and occupation levels used as index points. The constraints on the spatial scale over which sea‐level reconstructions can be applied (changes in palaeotidal range and crustal movements) are also considered. Finally, we discuss whether the large‐amplitude centennial‐scale sea‐level fluctuations proposed by Behre can be reconciled with the known mechanisms of sea‐level change and other recent high‐resolution studies from this region. We conclude that such fluctuations are highly unlikely to be real features of the sea‐level history of the southern North Sea.  相似文献   

12.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The course of Irish sea levels during the late-Holocene is not well-known, yet it is an understanding of this period that will prove crucial in the definition and management of future sea-level changes. The coastline of Ireland embraces wide environmental and glacio-isostatic contrasts, which serve and, to some extent, control sea-level events at both local and regional scales, making definitive resolution of relative sea-level changes difficult. In the southwest, the picture is of inexorable relative sea-level rise. Studies in Co. Kerry show a gradual submergence of terrestrial facies, by estuarine and, in places, marine materials. Pollen and diatom studies, together with 14C dates, suggest a decreasing rate of relative sea-level rise in the last 2500 years, often associated with geomorphological changes. Sites on the south coast of Ireland confirm the evidence from the southwest. In Cork Harbour, recent relative sea-level rise since 2100 BP was responsible for marginal land submergence, while elsewhere rising water levels appear to have caused rapid barrier migrations and coast erosion. Palaeoenvironmental evidence from this region suggests a distinctive pattern of sea-level change, associated with sedimentary and/or crustal dynamics, which is not encountered elsewhere in northwest Europe. The overall rate of relative sea-level change on the south and southwest coasts falls between 0.6 and 1.1 mm/year over the last 5000 years. In the north, there is a clear east to west variation in relative sea-level trends, following an isostatically-controlled peak (+3 to ?1 m OD) between 6500 BP (east) and 3500 BP (west). Falling sea levels from 3500 to 1500 BP have been followed by a general slow rise, although there are still local anomalies to this pattern, most noticeably at Malin Head, where sea level is currently falling at 2.4mm/year. Relative sea-level signatures in Ireland differ markedly between the north and south coasts. Furthermore geomorphological and ecological contexts of this rise vary from east to west, providing a complex all-Ireland framework for future investigations.  相似文献   

15.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   

17.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Palynologycal information was integrated with the aim to study vegetation history and environmental changes in Mar Chiquita coastal lagoon area (in the southeast of Buenos Aires province, Argentina) related to sea‐level fluctuations during the Holocene. Prior to 5000 yr BP a mosaic of psammophytic and halophytic communities developed on extensive sandy flats. Between 4000 and 2500 yr BP, during a period of sea‐level stabilisation, similar halophytic communities developed in the south and in the middle part of the present lagoon. Between 4500 and 3500 yr BP hydrophytic and halophytic communities developed in Laguna Hinojales. Beginning 2500 yr BP, when sea level was nearing its present position, modern plant communities became established. Pollen records suggest that littoral evolution of the area was much more complex than previous models have described, introducing new evidence of the geomorphological evolution of Mar Chiquita coastal lagoon. The estuarine environment was delimited by a system of barrier islands instead of a linear prograding barrier, as has been proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A predictive model for locating early Holocene archaeological sites in southern Southeast Alaska was developed based on shell‐bearing raised marine deposits. Fieldwork included coring of select‐raised marine strata, measuring their elevations, and radiocarbon dating the associated shell samples within the cores. A subset of the data was used to produce a relative sea‐level curve spanning the Holocene. The relative sea‐level curve suggests that sites favorable for habitation between 9200 and 7000 14C yr B.P. should be found 16–22 ± 1 m above present zero tide. The sea‐level curve and new high‐resolution digital elevation models allowed reconstruction of past shorelines at various elevations. Surveys to test the model found and recorded over 70 archaeological sites from present sea level up to 32 m above present zero tide. Eleven new sites were within the targeted elevation range and radiocarbon dated to 9280–6890 14C yr B.P. Initial investigations indicate these older sites are rich in microblade and pebble tool technology. The new early Holocene sites indicate more extensive early maritime settlement of Alaska than implied by previous studies and contribute to our understanding of the early movement of people into North America.  相似文献   

20.
The history of sea‐level change and sediment accumulation since the last deglaciation along the German North Sea coast is still controversial because of a limitation in the quantity and quality of chronological data. In the current study, the chronology of a 16‐ka coastal sedimentary record from the Garding‐2 core, retrieved from the Eiderstedt Peninsula in Schleswig‐Holstein, northern Germany, was established using OSL and AMS 14C dating techniques. The robust chronology using 14 radiocarbon and 25 OSL dates from the Garding‐2 core is the first long‐term record that covers the Holocene as well as the last deglaciation period in one succession in the German North Sea area. It provides a new insight into understanding the Holocene transgression and coastal accumulation histories. The combined evidence from the sedimentology and chronology investigations indicates that an estuarine environment dominated in Eiderstedt Peninsula from 16 to 13 ka, followed by a depositional hiatus between 13 and 8.3 ka, attributed to erosion caused by the Holocene transgression; the onset of the Holocene transgression at the core site occurred at around 8.3 ka. The sea level continued to rise with a decelerated rate until around 3 ka. Since 3 ka, the shoreline has begun to prograde. Foreshore (tidal flat) sediments have been deposited at the drilling site with a very high sedimentation rate of about 10 m ka?1. At around 2 ka, a sandy beach deposit accumulated in the sedimentary succession, indicating that the coastline shifted landward, which may represent a small‐scale transgression in the late Holocene. At around 1.5 ka, terrestrial clastic sediment started to accumulate, indicating a retreat of the relative sea level in this area, which may be related to local diking activities undertaken since the 11th century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号