首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the wind-wave variability in the tidal basins of the German Wadden Sea is modelled with combined numerical and neural-network (NN) methods. First, the wave propagation and transformation in the study area are modelled with the state-of-the-art third-generation spectral wave model SWAN. The ability of SWAN to accurately reproduce the phenomena of interest in nonstationary conditions governed by highly variable winds, water levels and currents is shown by comparisons of the modelled and measured mean wave parameters at four stations. The principal component analysis of the SWAN results is then used to reveal the dominating spatial patterns in the data and to reduce their dimensionality, thus enabling an efficient and relatively straightforward NN modelling of mean wave parameters in the whole study area. It is shown that the data produced with the approach developed in this work have statistical properties (discrete probability distributions of the mean wave parameters etc.) very close to the properties of the data obtained with SWAN, thus proving that this approach can be used as a reliable tool for wind wave simulation in coastal areas, complementary to (often computationally demanding) spectral wave models.  相似文献   

2.
Conventional spectral wave models, which are used to determine wave conditions in coastal regions, can account for all relevant processes of generation, dissipation and propagation, except diffraction. To accommodate diffraction in such models, a phase-decoupled refraction–diffraction approximation is suggested. It is expressed in terms of the directional turning rate of the individual wave components in the two-dimensional wave spectrum. The approximation is based on the mild-slope equation for refraction–diffraction, omitting phase information. It does therefore not permit coherent wave fields in the computational domain (harbours with standing-wave patterns are excluded). The third-generation wave model SWAN (Simulating WAves Nearshore) was used for the numerical implementation based on a straightforward finite-difference scheme. Computational results in extreme diffraction-prone cases agree reasonably well with observations, analytical solutions and solutions of conventional refraction–diffraction models. It is shown that the agreement would improve further if singularities in the wave field (e.g., at the tips of breakwaters) could be properly accounted for. The implementation of this phase-decoupled refraction–diffraction approximation in SWAN shows that diffraction of random, short-crested waves, based on the mild-slope equation can be combined with the processes of refraction, shoaling, generation, dissipation and wave–wave interactions in spectral wave models.  相似文献   

3.
长兴岛海区波流相互作用数值模拟研究   总被引:1,自引:0,他引:1  
王彪  沈永明  王亮 《海洋工程》2012,30(3):87-96
波和流是近岸海区的主要动力因素。应用二维潮流数学模型和最新第三代近岸海浪模式SWAN,建立了非结构网格下二维情况近岸波流耦合作用数学模型。时间离散采用欧拉向前格式,空间离散采用有限体积法显式格式。通过将波浪场及潮流场进行迭代耦合计算,实现了对波流共同作用下波浪场和潮流场的数值模拟。将模型应用于矩形海湾实验和李孟国数模实验等理想地形以及大连长兴岛海区实际复杂地形算例,并用现场实测资料对计算结果进行验证,结果表明:耦合结果与实测结果吻合良好,并且要优于未耦合的结果。  相似文献   

4.
《Coastal Engineering》2005,52(2):177-195
An improved SWAN model using the Finite Element Method (FEM) was developed for wind waves simulations in both large-scale oceanic deep water regions and small-scale shallow water regions. The model employs a Taylor–Galerkin finite element technique for the discretization of the modeled area, which makes it flexible to represent bottom topography and irregular boundaries. The fractional step numerical scheme was adopted to split the wave action balance equation into three one-dimensional space equations, which can be solved efficiently by one-dimensional algorithms. The Flux-Corrected Transport method was also applied to circumvent the steep-gradients of the action density in the frequency space. The FEM code with unstructured grids improves the numerical schemes in the original SWAN to maintain computational efficiency at the operational stage. A simulation of wind wave activities for the monsoon and the 2000 Typhoon Bilis were performed using the FEM and SWAN models. The simulated results were compared with field observations in order to verify the suitability of the method.  相似文献   

5.
The effect of the drag coefficient on a typhoon wave model is investigated.Drag coefficients for Pingtan Island are derived from the progress of nine typhoons using COARE 3.0 software.The wind parameters are obtained using the Weather Research and Forecasting model.The simulation of wind agrees well with observations.Typhoon wave fields are then simulated using the third-generation wave model SWAN.The wave model includes exponential and linear growths of the wind input,which determine the wave-growth mode.A triple triangular mesh is adopted with spatial resolution as fine as 100 m nearshore.The SWAN model performs better when using the new drag coefficient rather than the original coefficient.  相似文献   

6.
《Coastal Engineering》2005,52(3):237-256
Irregular convergence behaviour is frequently encountered when computations of wave spectra are performed by means of the third-generation wind wave model SWAN (Simulating WAve Nearshore). Numerical accuracy is another key issue. The present paper proposes two techniques that improve the convergence and accuracy properties of SWAN in the prediction of stationary wave conditions in the nearshore zone. The first is an under-relaxation approach in which the extent of updates during the iteration process, which underlies a route to steady state, is made proportional to wave frequency. This method complies with the principle of decreasing time scales at higher frequencies, which is inherent to the evolution of wind waves. As a result, the improved SWAN model is free from numerical restrictions to spectral shape in the non-equilibrium range. The second proposed method is a new termination criterion associated with the rate of model convergence, by which the identification of the point of convergence is improved. The capabilities of these methods are demonstrated by simulations of idealized cases and a field application featuring fetch- and depth-limited wave growth. It is concluded that the proposed termination criterion improves numerical accuracy and that the action density limiter, as currently used in SWAN, has minimal negative influence on stationary model results.  相似文献   

7.
寒潮影响下江苏沿海风浪场数值模拟研究   总被引:2,自引:0,他引:2  
周春建  徐福敏 《海洋工程》2017,35(2):123-130
基于第三代浅水波浪数值预报模型SWAN,建立自西北太平洋嵌套至东中国海、江苏沿海的三重嵌套模型,对2010年12月12日至15日江苏沿海寒潮大风引起的风浪过程进行了数值模拟研究。利用西北太平洋和江苏沿海实测数据对模型进行了验证,结果表明SWAN嵌套模型能较好地模拟江苏沿海寒潮风浪场的时空分布。通过响水站实测数据对江苏沿海底摩擦系数进行了率定,研究表明选取Collins拖曳理论中摩擦因数C_f=0.001时,有效波高模拟误差相对较小。寒潮风浪场的特征分析表明,有效波高分布与风场分布基本一致,寒潮风浪在江苏沿海北部影响较为显著,辐射沙洲附近由于其特殊地形影响相对较小。  相似文献   

8.
为减少复杂地形对台风浪数值模拟的干扰,有效优化模拟精度和效果,充分发挥台风浪数值模式在防灾减灾中的作用,文章利用ERA-interim风场驱动模式,以1513号台风"苏迪罗"为例,采用2种方案对其形成的台风浪进行数值模拟,并对二者进行比较。其中,方案(1)为采用WW3模式,方案(2)为采用WW3模式和SWAN模式嵌套。研究结果表明:选取有效波高的模拟值和观测值,根据对散点分布的定性分析以及对相关系数、偏差和均方根误差的定量计算,采用方案(2)的模拟精度更高;通过绘制台风浪场分布图,采用方案(2)对有效波高的动态数值模拟更加明显和准确,尤其对于复杂地形海域的模拟效果更优。因此,在未来的海浪数值模拟中,可参照采用方案(2),即在大区域采用WW3模式,在复杂地形海域嵌套SWAN模式。  相似文献   

9.
首先对目前描述近岸波浪传播变形的数学模型进行了回顾与总结;对不同数学模型的特点、适用范围和发展情况进行了阐述与对比。应用基于Boussinesq方程的Coulwave模式针对几个经典实验地形进行了数值实验,数值结果和实验实测数据吻合较好。此外,分别采用不同的近岸波浪模型模拟了某渔港附近波浪的传播变形,结果表明:当考虑波浪的折射、绕射、反射联合作用时,Coulwave模式计算结果明显较缓坡方程及SWAN模型计算结果更加合理。  相似文献   

10.
This study aims to present an evaluation and implementation of a high-resolution SWAN wind wave hindcast model forced by the CFSR wind fields in the west Mediterranean basin, taking into account the recent developments in wave modelling as the new source terms package ST6. For this purpose, the SWAN model was calibrated based on one-year wave observations of Azeffoune buoy (Algerian coast) and validated against eleven wave buoys measurements through the West Mediterranean basin. For the calibration process, we focused on the whitecapping dissipation coefficient Cds and on the exponential wind wave growth and whitecapping dissipation source terms. The statistical error analysis of the calibration results led to conclude that the SWAN model calibration corrected the underestimation of the significant wave height hindcasts in the default mode and improved its accuracy in the West Mediterranean basin. The exponential wind wave growth of Komen et al (1984) and the whitecapping dissipation source terms of Janssen (1991) with Cds = 1.0 have been thus recommended for the western Mediterranean basin. The comparison of the simulation results obtained using this calibrated parameters against eleven measurement buoys showed a high performance of the calibrated SWAN model with an average scatter index of 30% for the significant wave heights and 19% for the mean wave period. This calibrated SWAN model will constitute a practical wave hindcast model with high spatial resolution (˜3 km) and high accuracy in the Algerian basin, which will allow us to proceed to a finer mesh size using the SWAN nested grid system in this area.  相似文献   

11.
依据自由海面海洋动力学原始方程建立了一种三维有限差分数值模式,可用于潮波、风暴潮和海流的数值模拟和预报。运动方程和连续方程的数值格式采用内、外模态分离的技术。外模态采用交替方向隐格式,用于计算海面高度和垂直平均流速,时间步长不受Courant-Friderichs-Lewy条件限制;内模态采用半隐格式,用于计算海流的垂直2颁布,其时间步长可大于外模态时间步长。模式的计算程度比一般显式模式可快10倍  相似文献   

12.
In this paper, we identify a crucial numerical problem in sigma coordinate models, leading to unacceptable spurious diapycnal mixing. This error is a by-product of recent advances in numerical methods, namely the implementation of high-order diffusive advection schemes. In the case of ROMS, spurious mixing is produced by its third-order upwind advection scheme, but our analysis suggests that all diffusive advection schemes would behave similarly in all sigma models. We show that the common idea that spurious mixing decreases with resolution is generally false. In a coarse-resolution regime, spurious mixing increases as resolution is refined, and may reach its peak value when eddy-driven lateral mixing becomes explicitly resolved. At finer resolution, diffusivities are expected to decrease but with values that only become acceptable at resolutions finer than the kilometer. The solution to this problem requires a specifically designed advection scheme. We propose and validate the RSUP3 scheme, where diffusion is split from advection and is represented by a rotated biharmonic diffusion scheme with flow-dependent hyperdiffusivity satisfying the Peclet constraint. The rotated diffusion operator is designed for numerical stability, which includes improvements of linear stability limits and a clipping method adapted to the sigma-coordinate. Realistic model experiments in a southwest Pacific configuration show that RSUP3 is able to preserve low dispersion and diffusion capabilities of the original third-order upwind scheme, while preserving water mass characteristics. There are residual errors from the rotated diffusion operator, but they remain acceptable. The use of a constant diffusivity rather than the Peclet hyperdiffusivity tends to increase these residual errors which become unacceptable with Laplacian diffusion. Finally, we have left some options open concerning the use of time filters as an alternative to spatial diffusion. A temporal discretization approach to the present problem (including implicit discretization) will be reported in a following paper.  相似文献   

13.
L. Rusu 《Ocean Engineering》2011,38(10):1174-1183
A study of the wave propagation and of the consequences of the influence of currents on waves in the Tagus estuary is performed in the present work. For this purpose a high-resolution SWAN domain was coupled to a wave prediction system based on the two state of the art phase averaged wave models, WAM for wave generation and SWAN for nearshore wave transformation. The most important factors affecting the incoming waves are the local currents and the wind. These influences were evaluated by performing SWAN simulations in the target area with and respectively without considering the tide level and tide induced currents. The model results were compared with wave measurements, validating in this way the results of the wave prediction system developed herewith.  相似文献   

14.
The SWAN model used to study wave evolution in a flume   总被引:1,自引:0,他引:1  
The SWAN numerical model is used to model the evolution of JONSWAP wave spectra and hence the significant wave height of waves in a tank. Comparison with experiment has shown that modelling triad interactions in the numerical model leads to too low predictions of spectra and significant wave height and should therefore be excluded. The modelling of the breaking constant was also investigated, by looking at the use of a constant breaking constant, Nelson formula, and Goda formula (added into SWAN for this study). Using a constant value of 0.78 within SWAN gave the best comparison between theory and experiment.  相似文献   

15.
The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wave tank is built based on a Navier–Stokes model, which employs the VPM (volume-average/point-value multi-moment) scheme as the fluid solver and the THINC/QQ method (THINC method with quadratic surface representation and Gaussian quadrature) for the free-surface capturing. Simulations of regular waves in an intermediate water depth are conducted and the results are assessed via comparing with the analytical solutions. The performance of the present model and interFoam solver in simulating the wave propagation is systematically compared in this work. The results clearly demonstrate that compared with interFoam solver, the present model significantly improves the dissipation properties of the propagating wave, where the waveforms as well as the velocity distribution can be substantially maintained while the waves propagating over long distances even with large time steps and coarse grids. It is also shown that the present model requires much less computation time to reach a given error level in comparison with interFoam solver.  相似文献   

16.
夏波  张庆河  蒋昌波 《海洋与湖沼》2013,44(6):1452-1456
本文采用ADCIRC模型和SWAN模型, 建立了一个基于非结构化网格的波流耦合数值模式, 风浪计算和潮汐风暴潮计算均采用同一套三角网格, 对复杂岸线和建筑物布置均有较好的描述, 且避免了模型插值, 提高了计算效率和精度。利用该模型对渤海湾西南海域几次强风过程中的风浪和潮汐风暴潮进行了研究, 通过实测资料对该模型进行了验证, 结果表明该模式具有较高的精度, 能较好地描述风浪、潮汐风暴潮的传播演变及其相互作用, 可应用于风浪与潮汐风暴潮的模拟计算。  相似文献   

17.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   

18.
With all the improvement in wave and hydrodynamics numerical models, the question rises in our mind that how the accuracy of the forcing functions and their input can affect the results. In this paper, a commonly used numerical third-generation wave model, SWAN is applied to predict waves in Lake Michigan. Wind data are analyzed to determine wind variation frequency over Lake Michigan. Wave predictions uncertainty due to wind local effects are compared during a period where wind has a fairly constant speed and direction over the northern and southern basins. The study shows that despite model calibration in Lake Michigan area, the model deficiency arises from ignoring wind effects in small scales. Wave prediction also emphasizes that small scale turbulence in meteorological forces can increase prediction errors by 38%. Wave frequency and coherence analysis show that both models can predict the wave variation time scale with the same accuracy. Insufficient number of meteorological stations can result in neglecting local wind effects and discrepancies in current predictions. The uncertainty of wave numerical models due to input uncertainties and model principals should be taken into account for design risk factors.  相似文献   

19.
In this paper, a modified leap-frog finite difference (FD) scheme is developed to solve Non linear Shallow Water Equations (NSWE). By adjusting the FD mesh system and modifying the leap-frog algorithm, numerical dispersion is manipulated to mimic physical frequency dispersion for water wave propagation. The resulting numerical scheme is suitable for weakly nonlinear and weakly dispersive waves propagating over a slowly varying water depth. Numerical studies demonstrate that the results of the new numerical scheme agree well with those obtained by directly solving Boussinesq-type models for both long distance propagation, shoaling and re-fraction over a slowly varying bathymetry. Most importantly, the new algorithm is much more computationally efficient than existing Boussinesq-type models, making it an excellent alternative tool for simulating tsunami waves when the frequency dispersion needs to be considered.  相似文献   

20.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号