首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this paper we present a case history of seismic reservoir characterization where we estimate the probability of facies from seismic data and simulate a set of reservoir models honouring seismically‐derived probabilistic information. In appraisal and development phases, seismic data have a key role in reservoir characterization and static reservoir modelling, as in most of the cases seismic data are the only information available far away from the wells. However seismic data do not provide any direct measurements of reservoir properties, which have then to be estimated as a solution of a joint inverse problem. For this reason, we show the application of a complete workflow for static reservoir modelling where seismic data are integrated to derive probability volumes of facies and reservoir properties to condition reservoir geostatistical simulations. The studied case is a clastic reservoir in the Barents Sea, where a complete data set of well logs from five wells and a set of partial‐stacked seismic data are available. The multi‐property workflow is based on seismic inversion, petrophysics and rock physics modelling. In particular, log‐facies are defined on the basis of sedimentological information, petrophysical properties and also their elastic response. The link between petrophysical and elastic attributes is preserved by introducing a rock‐physics model in the inversion methodology. Finally, the uncertainty in the reservoir model is represented by multiple geostatistical realizations. The main result of this workflow is a set of facies realizations and associated rock properties that honour, within a fixed tolerance, seismic and well log data and assess the uncertainty associated with reservoir modelling.  相似文献   

2.
3.
基于SOM和PSO的非监督地震相分析技术   总被引:5,自引:2,他引:3       下载免费PDF全文
地震相分析技术是储层预测的一种重要方法,可以用来描述有利沉积相带的分布规律.传统的地震相聚类分析方法对大数据的处理运算速度较慢,且容易陷入局部极小值,造成聚类分析的结构不准确.本文提出基于自组织神经网络(SOM)和粒子群优化方法(PSO)相结合的地震相分析技术,利用自组织神经网络能够保持原始地震数据的拓扑结构特性的特点,将大量冗余样本压缩为小样本数据,再通过粒子群的全局寻优能力改善K均值聚类的效果.理论模型和实际应用表明该方法能既有效实现数据压缩,又能提供较为准确的全局解,在地震相预测中兼顾计算效率和计算精度.  相似文献   

4.
Mutual relationships between geological and geophysical data obtained by using methods of different scale are presented for the Miocene sandy-shaly thin-bedded formation and for the Zechstein carbonate formation. The common basis of laboratory results, well logging and seismic data was a recognition of elastic and reservoir properties of rocks. The common basis of laboratory results, well logging and seismic data were elastic and reservoir properties of rocks. Seismic attributes calculated from acoustic full waveforms were a link between the considered data. Seismic attributes strongly depend on small changes observed in rock formation related to lithology variations, facies changes, structural events and petrophysical properties variability. The observed trends and relationships of high correlation coefficients in the analysed data proved the assumption made at the beginning of research that common physical basis is a platform for data scaling. Proper scaling enables expanding the relationships determined from laboratory and well logging of petrophysical parameters to a seismic scale.  相似文献   

5.
We present here a comparison between two statistical methods for facies classifications: Bayesian classification and expectation–maximization method. The classification can be performed using multiple seismic attributes and can be extended from well logs to three‐dimensional volumes. In this work, we propose, for both methods, a sensitivity study to investigate the impact of the choice of seismic attributes used to condition the classification. In the second part, we integrate the facies classification in a Bayesian inversion setting for the estimation of continuous rock properties, such as porosity and lithological fractions, from the same set of seismic attributes. The advantage of the expectation–maximization method is that this algorithm does not require a training dataset, which is instead required in a traditional Bayesian classifier and still provides similar results. We show the application, comparison, and analysis of these methods in a real case study in the North Sea, where eight sedimentological facies have been defined. The facies classification is computed at the well location and compared with the sedimentological profile and then extended to the 3D reservoir model using up to 14 seismic attributes.  相似文献   

6.
Seismic facies analysis makes use of different seismic parameters in order to get other than structural information. A review is given of possibilities and usefulness of seismic facies analysis in oil exploration. A seismic facies unit can be defined as a sedimentary unit which is different from adjacent units in its seismic characteristics. Parameters that should be taken into consideration in the seismic facies analysis are as follows: reflection amplitude, dominant reflection frequency, reflection polarity, interval velocity, reflection continuity, reflection configuration, abundance of reflections, geometry of seismic facies unit, and relationship with other units. Interpretation of seismic facies data may be either direct or indirect. The purpose of the direct interpretation is to find out geological causes responsible for the seismic signature of a seismic facies unit. So, the direct interpretation may be aimed at predicting lithology, fluid content, porosity, relative age, overpressured shales, type of stratification, geometry of the geological body corresponding to the seismic facies unit and its geological setting. The indirect interpretation is intended to reach some conclusions on depositional processes and environments, sediment transport direction, and some aspects of geological evolution (transgression, regression, subsidence, uplift, erosion). The results of the seismic facies analysis may be shown on seismic facies cross-sections and seismic facies maps. Depending on the available seismic data and geological conditions in the area under consideration, the seismic facies maps may be of different types such as general seismic facies maps showing distribution of different seismic facies units, sand-shale ratio maps, direction of cross-bedding and paleo-transport maps etc. Several kinds of seismic facies units and their geological interpretation are discussed as examples of seismic facies analysis.  相似文献   

7.
8.
In this paper, we introduce a new method of geophysical data interpretation based on simultaneous analysis of images and sounds. The final objective is to expand the interpretation workflow through multimodal (visual–audio) perception of the same information. We show how seismic data can be effectively converted into standard formats commonly used in digital music. This conversion of geophysical data into the musical domain can be done by applying appropriate time–frequency transforms. Using real data, we demonstrate that the Stockwell transform provides a very accurate and reliable conversion. Once converted into musical files, geophysical datasets can be played and interpreted by using modern computer music tools, such as sequencers. This approach is complementary and not substitutive of interpretation methods based on imaging. It can be applied not only to seismic data but also to well logs and any type of geophysical time/depth series. To show the practical implications of our integrated visual–audio method of interpretation, we discuss an application to a real seismic dataset in correspondence of an important hydrocarbon discovery.  相似文献   

9.
地震属性分析技术在地球物理勘探领域的广泛应用,启发研究人员将其应用于人工源宽角反射/折射深地震测深剖面的资料预处理和震相识别。采用札达-泉水沟深地震测深资料,提取振幅、信噪比、主频、瞬时带宽、瞬时高频能量等地震属性参数,分析不同参数的物理含义,挑选其中对界面变化敏感的参数,对深地震测深资料进行预处理,并利用P波和S波的联合扫描,提高震相识别的准确性。走时互换结果显示,采用地震属性参数可有效提高震相拾取的准确性,进而提高后续地壳速度结构反演结果的精度。  相似文献   

10.
Seismic inversion has drawn the attention of researchers due to its capability of building an accurate earth model. Such a model will need to be discretised finely, and the dimensions of the inversion problem will be very high. In this paper, we propose an efficient differential evolution algorithm and apply it to high‐dimensional seismic inversion. Our method takes into account the differences among individuals, which are disregarded in conventional differential evolution methods, resulting to a better balance between exploration and exploitation. We divide the entire population into three subpopulations and propose a novel mutation strategy with two phases. Furthermore, we optimise the crossover operator by applying the components having the best objective function values into the crossover operator. We embed this strategy into a cooperative coevolutionary differential evolution and propose a new differential evolution algorithm referred to as a differential evolution with subpopulations. Then, we apply our scheme to both synthetic and field data; the results of high‐dimensional seismic inversion have shown that the proposed differential evolution with subpopulations achieves faster convergence and a higher‐quality solution for seismic inversion.  相似文献   

11.
Repeatability of seismic data plays a crucial role in time‐lapse seismic analysis. There are several factors that can decrease the repeatability, such as positioning errors, varying tide, source variations, velocity changes in the water layer (marine data) and undesired effects of various processing steps. In this work, the complexity of overburden structure, as an inherent parameter that can affect the repeatability, is studied. A multi‐azimuth three‐dimensional vertical‐seismic‐profiling data set with 10 000 shots is used to study the relationship between overburden structure and repeatability of seismic data. In most repeatability studies, two data sets are compared, but here a single data set has been used because a significant proportion of the 10 000 shots are so close to each other that a repeatability versus positioning error is possible. We find that the repeatability decreases by a factor of approximately 2 under an overburden lens. Furthermore, we find that the X‐ and Y‐components have approximately the same sensitivity to positioning errors as the Z‐component (for the same events) in this three‐dimensional vertical‐seismic‐profiling experiment. This indicates that in an area with complex overburden, positioning errors between monitor and base seismic surveys are significantly more critical than outside such an area. This study is based on a three‐dimensional three‐component vertical‐seismic‐profiling data set from a North Sea reservoir and care should be taken when extrapolating these observations into a general four‐dimensional framework.  相似文献   

12.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

13.
In this paper, we propose a workflow based on SalSi for the detection and delineation of geological structures such as salt domes. SalSi is a seismic attribute designed based on the modelling of human visual system that detects the salient features and captures the spatial correlation within seismic volumes for delineating seismic structures. Using this attribute we cannot only highlight the neighbouring regions of salt domes to assist a seismic interpreter but also delineate such structures using a region growing method and post‐processing. The proposed delineation workflow detects the salt‐dome boundary with very good precision and accuracy. Experimental results show the effectiveness of the proposed workflow on a real seismic dataset acquired from the North Sea, F3 block. For the subjective evaluation of the results of different salt‐dome delineation algorithms, we have used a reference salt‐dome boundary interpreted by a geophysicist. For the objective evaluation of results, we have used five different metrics based on pixels, shape, and curvedness to establish the effectiveness of the proposed workflow. The proposed workflow is not only fast but also yields better results as compared with other salt‐dome delineation algorithms and shows a promising potential in seismic interpretation.  相似文献   

14.
Hydrocarbon prediction from seismic amplitude and amplitude‐versus‐offset is a daunting task. Amplitude interpretation is ambiguous due to the effects of lithology and pore fluid. In this paper, we propose a new attribute “J” based on a Gassmann–Biot fluid substitution to reduce ambiguity. Constrained by seismic and rock physics, the J attribute has good ability to detect hydrocarbons from seismic data. There are currently many attributes for hydrocarbon prediction. Among the existing attributes, far‐minus‐near times far and fluid factor are commonly used. In this paper, the effectiveness of these two existing attributes was compared with the new attribute. Numerical modelling was used to test the new attribute “J” and to compare “J” with the two existing attributes. The results showed that the J attribute can predict the existence of hydrocarbon in different porosity scenarios with less ambiguity than the other two attributes. Tests conducted with real seismic data demonstrated the effectiveness of the J attribute. The J attribute has performed well in scenarios in which the other two attributes gave inaccurate predictions. The proposed attribute “J” is fast and simple, and it could be used as a first step in hydrocarbon analysis for exploration.  相似文献   

15.
The Maastrichtian–Paleocene El Haria formation was studied and defined in Tunisia on the basis of outcrops and borehole data; few studies were interested in its three-dimensional extent. In this paper, the El Haria formation is reviewed in the context of a tectono-stratigraphic interval using an integrated seismic stratigraphic analysis based on borehole lithology logs, electrical well logging, well shots, vertical seismic profiles and post-stack surface data. Seismic analysis benefits from appropriate calibration with borehole data, conventional interpretation, velocity mapping, seismic attributes and post-stack model-based inversion. The applied methodology proved to be powerful for charactering the marly Maastrichtian–Paleocene interval of the El Haria formation. Migrated seismic sections together with borehole measurements are used to detail the three-dimensional changes in thickness, facies and depositional environment in the Cap Bon and Gulf of Hammamet regions during the Maastrichtian–Paleocene time. Furthermore, dating based on their microfossil content divulges local and multiple internal hiatuses within the El Haria formation which are related to the geodynamic evolution of the depositional floor since the Campanian stage. Interpreted seismic sections display concordance, unconformities, pinchouts, sedimentary gaps, incised valleys and syn-sedimentary normal faulting. Based on the seismic reflection geometry and terminations, seven sequences are delineated. These sequences are related to base-level changes as the combination of depositional floor paleo-topography, tectonic forces, subsidence and the developed accommodation space. These factors controlled the occurrence of the various parts of the Maastrichtian–Paleocene interval. Detailed examinations of these deposits together with the analysis of the structural deformation at different time periods allowed us to obtain a better understanding of the sediment architecture in depth and the delineation of the geodynamic evolution of the region.  相似文献   

16.
Optimization of sub-band coding method for seismic data compression   总被引:2,自引:0,他引:2  
Seismic data volumes, which require huge transmission capacities and massive storage media, continue to increase rapidly due to acquisition of 3D and 4D multiple streamer surveys, multicomponent data sets, reprocessing of prestack seismic data, calculation of post‐stack seismic data attributes, etc. We consider lossy compression as an important tool for efficient handling of large seismic data sets. We present a 2D lossy seismic data compression algorithm, based on sub‐band coding, and we focus on adaptation and optimization of the method for common‐offset gathers. The sub‐band coding algorithm consists of five stages: first, a preprocessing phase using an automatic gain control to decrease the non‐stationary behaviour of seismic data; second, a decorrelation stage using a uniform analysis filter bank to concentrate the energy of seismic data into a minimum number of sub‐bands; third, an iterative classification algorithm, based on an estimation of variances of blocks of sub‐band samples, to classify the sub‐band samples into a fixed number of classes with approximately the same statistics; fourth, a quantization step using a uniform scalar quantizer, which gives an approximation of the sub‐band samples to allow for high compression ratios; and fifth, an entropy coding stage using a fixed number of arithmetic encoders matched to the corresponding statistics of the classified and quantized sub‐band samples to achieve compression. Decompression basically performs the opposite operations in reverse order. We compare the proposed algorithm with three other seismic data compression algorithms. The high performance of our optimized sub‐band coding method is supported by objective and subjective results.  相似文献   

17.
Seismic amplitudes contain important information that can be related to fluid saturation. The amplitude‐versus‐offset analysis of seismic data based on Gassmann's theory and the approximation of the Zoeppritz equations has played a central role in reservoir characterization. However, this standard technique faces a long‐standing problem: its inability to distinguish between partial gas and “fizz‐water” with little gas saturation. In this paper, we studied seismic dispersion and attenuation in partially saturated poroelastic media by using frequency‐dependent rock physics model, through which the frequency‐dependent amplitude‐versus‐offset response is calculated as a function of porosity and water saturation. We propose a cross‐plotting of two attributes derived from the frequency‐dependent amplitude‐versus‐offset response to differentiate partial gas saturation and “fizz‐water” saturation. One of the attributes is a measure of “low frequency”, or Gassmann, of reflectivity, whereas the other is a measure of the “frequency dependence” of reflectivity. This is in contrast to standard amplitude‐versus‐offset attributes, where there is typically no such separation. A pragmatic frequency‐dependent amplitude‐versus‐offset inversion for rock and fluid properties is also established based on Bayesian theorem. A synthetic study is performed to explore the potential of the method to estimate gas saturation and porosity variations. An advantage of our work is that the method is in principle predictive, opening the way to further testing and calibration with field data. We believe that such work should guide and augment more theoretical studies of frequency‐dependent amplitude‐versus‐offset analysis.  相似文献   

18.
基于线性预测倒谱系数的地震相分析   总被引:1,自引:0,他引:1       下载免费PDF全文
解滔  郑晓东  张&# 《地球物理学报》2016,59(11):4266-4277
本文借鉴语音识别技术中的线性预测倒谱系数(LPCC系数)特征参数提取方法对地震数据进行分解,这种方法的优点是:可以获得将子波和反射系数信息分离的地震语音特征参数,对地质现象边界具有较好的描述能力,使我们可以从不同维度更细致地观察隐藏在地震数据中的地质特征.理论模型分析表明,基于LPCC系数的地震分析具有较高的地震相划分能力.实际地震资料应用表明,LPCC系数对储层特征的描述比常规三瞬属性更为细致,不同阶次LPCC系数在描述储层不同特征时也保持了内在的联系.采用K均值聚类方法对提取的12阶和24阶LPCC系数进行聚类分析,聚类结果与目的层段古地形较为吻合,较好地反映了研究区的断裂、礁滩相带、深水扇和储层的分布特征,说明在地震相分析中采用LPCC系数作为特征参数是可行和有效的.  相似文献   

19.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

20.
岩相和储层物性参数是油藏表征的重要参数,地震反演是储层表征和油气藏勘探开发的重要手段.随机地震反演通常基于地质统计学理论,能够对不同类型的信息源进行综合,建立具有较高分辨率的储层模型,因而得到广泛关注.其中,概率扰动方法是一种高效的迭代随机反演策略,它能综合考虑多种约束信息,且只需要较少的迭代次数即可获得反演结果.在概率扰动的优化反演策略中,本文有效的联合多点地质统计学与序贯高斯模拟,并结合统计岩石物理理论实现随机反演.首先,通过多点地质统计学随机模拟,获得一系列等可能的岩相模型,扰动更新初始岩相模型后利用相控序贯高斯模拟建立多个储层物性参数模型;然后通过统计岩石物理理论,计算相应的弹性参数;最后,正演得到合成地震记录并与实际地震数据对比,通过概率扰动方法进行迭代,直到获得满足给定误差要求的反演结果.利用多点地质统计学,能够更好地表征储层空间特征.相控序贯高斯模拟的应用,能够有效反映不同岩相中储层物性参数的分布.提出的方法可在较少的迭代次数内同时获得具有较高分辨率的岩相和物性参数反演结果,模型测试和实际数据应用验证了方法的可行性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号