首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monthly seawater pH and alkalinity measurements were collected between January 1996 and December 2000 at 10°30′N, 64°40′W as part of the CARIACO (CArbon Retention In A Colored Ocean) oceanographic time series. One key objective of CARIACO is to study temporal variability in Total CO2 (TCO2) concentrations and CO2 fugacity (fCO2) at this tropical coastal wind-driven upwelling site. Between 1996 and 2000, the difference between atmospheric and surface ocean CO2 concentrations ranged from about − 64.3 to + 62.3 μatm. Physical and biochemical factors, specifically upwelling, temperature, primary production, and TCO2 concentrations interacted to control temporal variations in fCO2. Air–sea CO2 fluxes were typically depressed (0 to + 10 mmol C m 2 day 1) in the first few months of the year during upwelling. Fluxes were higher during June–November (+ 10 to 20 mmol C m 2 day 1). Fluxes were generally independent of the slight changes in salinity normally seen at the station, but low positive flux values were seen in the second half of 1999 during a period of anomalously heavy rains and land-derived runoff. During the 5 years of monthly data examined, only two episodes of negative air–sea CO2 flux were observed. These occurred during short but intense upwelling events in March 1997 (−10 mmol C m 2 day 1) and March 1998 (− 50 mmol C m 2 day 1). Therefore, the Cariaco Basin generally acted as a source of CO2 to the atmosphere in spite of primary productivity in excess of between 300 and 600 g C m 2 year 1.  相似文献   

2.
Coastal upwelling systems are regions with highly variable physical processes and very high rates of primary production and very little is known about the effect of these factors on the short-term variations of CO2 fugacity in seawater (fCO2w). This paper presents the effect of short-term variability (<1 week) of upwelling–downwelling events on CO2 fugacity in seawater (fCO2w), oxygen, temperature and salinity fields in the Ría de Vigo (a coastal upwelling ecosystem). The magnitude of fCO2w values is physically and biologically modulated and ranges from 285 μatm in July to 615 μatm in October. There is a sharp gradient in fCO2w between the inner and the outer zone of the Ría during almost all the sampling dates, with a landward increase in fCO2w.CO2 fluxes calculated from local wind speed and air–sea fCO2 differences indicate that the inner zone is a sink for atmospheric CO2 in December only (−0.30 mmol m−2 day−1). The middle zone absorbs CO2 in December and July (−0.05 and −0.27 mmol·m−2 day−1, respectively). The oceanic zone only emits CO2 in October (0.36 mmol·m−2 day−1) and absorbs at the highest rate in December (−1.53 mmol·m−2 day−1).  相似文献   

3.
Living barnacles eaten by sheepshead fishes results in the production of broken barnacle plate sediment. The yearly rate of production of broken barnacle plates is 4.9 kg m–2 and varies seasonally, with the largest mean flux in summer (22.5 g m–2 day–1) and the least in winter (1.9 g m–2 day–1). The mean grain size mode of broken barnacle plates is positively correlated with the flux of broken barnacle plates. Experiments with exclusion and inclusion cages support the postulation that increases in flux and size of broken barnacle plates are caused by the feeding activity of larger sheepshead.  相似文献   

4.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

5.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

6.
Tritium (3H or T) has been produced mostly by atmospheric nuclear weapon tests, and entered the ocean in the form of water (HTO). As tritium exists as water itself, it has been regarded as an ideal tool to study the transport of water masses. In April 2001 we collected water samples in the western Japan Basin (WJB) for tritium and helium measurement. The timely sampling provided direct evidence of the bottom water formation, resulting in the drastic increase in tritium concentration from 0.3 TU in 2000 to 0.67 TU in 2001. Considering that the new bottom waters were found mostly in the WJB, it implies that maximum 1% of the whole bottom layer below 2600 m should be replaced with the surface water during the severely cold winter 2000—2001.3H-3He age, showing the elapsed time since the water left from the surface, can be used to calculate oxygen utilization rate by dividing AOU by the age. Under the condition of 90% oxygen saturation in the surface water, the integration of OUR in the water column below 200 m yields net oxygen consumption of 12 mol (O2) m-2 yr-1, which corresponds to the export production of 99 g C m-2 yr-1 . This estimate is comparable to a previous estimate based on satellite data and implies that the ratio of export to primary production (f -ratio) is as high as 0.5 in the WJB.  相似文献   

7.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   

8.
We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during the summers of 2003 and 2004 on 16 dates distributed along depth and salinity gradients. Dissolved oxygen fluxes were measured on replicate sediment and water column samples exposed to a gradient of photosynthetically active radiation. Sediment inorganic nutrient (NH4+, NO3, PO43−) fluxes were measured. The response of dissolved oxygen fluxes to variation in light was fit to a photosynthesis–irradiance model and the parameter estimates were used to calculate daily integrated production in the water column and the benthos. The results suggest that shoal environments supported substantial benthic productivity, averaging 13.6 ± 4.7 mmol O2 m−2 d−1, whereas channel environments supported low benthic productivity, averaging 0.5 ± 0.3 mmol O2 m−2 d−1SE). Estimates of baywide microphytobenthic productivity ranged from 8.1 to 16.5 mmol O2 m−2 d−1, comprising about 16–32% of total system productivity. Benthic and water column dark respiration averaged 15.2 ± 3.2 and 33.6 ± 3.7 mmol O2 m−2 d−1, respectively Inorganic nutrient fluxes were generally low compared to relevant estuarine literature values, and responded minimally to light exposure. Across all stations, nutrient fluxes from sediments to the water column averaged 1.11 ± 0.98 mmol m−2 d−1 for NH4+, 0.58 ± 1.08 mmol m−2 d−1 for NO3, 0.01 ± 0.09 mmol m−2 d−1 for PO43−. The results of this study illustrate how light reaching the sediments is an important modulator of benthic nutrient and oxygen dynamics in shallow estuarine systems.  相似文献   

9.
Sediment characteristics, sediment respiration (oxygen uptake and sulphate reduction) and sediment–water nutrient exchange, in conjunction with water column structure and phytoplankton biomass were measured at five stations across the western Irish Sea front in August 2000. The transition from thermally stratified (surface to bottom temperature difference of 2.3 °C) to isothermal water (14.3 °C) occurred over a distance of 13 km. The influence of the front on phytoplankton biomass was limited to a small region of elevated near surface chlorophyll (2.23 mg m−3; 50% > biomass in mixed waters). The front clearly marked the boundary between depositional sediments (silt/clays) with elevated sediment pigment levels (≈60 mg m−2) on the western side, to pigment impoverished (<5 mg m−2) sand, through to coarse sand and shell fragments on the eastern side. Maximal rates of sedimentary respiration on the western stratified side of the front e.g. oxygen uptake S2 (852 μmol O2 m−2 h−1) and sulphate reduction at S1 (149 μmol SO42− m−2 h−1), coupled to significant efflux of nitrate and silicate at the western stations indicate closer benthic–pelagic coupling in the western Irish Sea. Whether this simply reflects the input of phytodetritus from the overlying water column or entrapment and settlement of pelagic production from other regions of the Irish Sea cannot yet be resolved.  相似文献   

10.
Measurement of dissolved oxygen using optodes in a FerryBox system   总被引:2,自引:0,他引:2  
Optode sensors can provide detailed information on concentrations of dissolved oxygen, which in turn may be used to quantify variations in net primary productivity. Throughout 2005 and 2006 the performance of commercially available oxygen optodes was examined, one in each year. The optode was part of an autonomous measurement system (FerryBox) on a ferry operating between Portsmouth (UK) and Bilbao (Spain). On crossings during which water samples were collected manually, the optode outputs were compared to measurements of dissolved oxygen made by Winkler titrations. The optodes maintained good stability with no evidence of instrumental drift during the course of a year. Over the observed concentration range (230–330 mM m−3) the optode data were approximately 2% low in both years. By fitting the optode data to the Winkler data the median difference between the optode and Winkler measurements is reduced to less than 1 mM m−3 (0.3%) in both years. The most appropriate calibration factor for 2005 was corrected O2 = Optode O2 × 1.018 and for 2006 the corresponding equation is corrected O2 = Optode O2 × 0.884 + 36.8. The standard deviation (95%) of the difference between the individual Winkler measurements was 5 mM m−3 and 3 mM m−3 in 2005 and 2006 respectively.Calculation of the oxygen saturation anomaly is required for calculation of the air sea exchange of oxygen and net biological production. This calculation requires the use of both salinity and temperature data. Salinity is measured to better than 0.1 so the corresponding error in anomaly is less than 0.2 mM m−3. Distortion of the temperature data is present due to warming of the water pumped to the optode. In winter this warming at the optode may be as great as 0.4 °C. The difference in the pumped water temperature can be corrected for by reference to other measurements of sea surface temperature reducing the error to less than 1 mM m−3.  相似文献   

11.
Rates of net nitrification were calculated for four large (13 m3) estuarine-based microcosms that had been subjected to inorganic nutrient enrichment. Calculated rates were based on two years of weekly nitrate and nitrite measurements and ranged from a maximum of 0·55 μmol NO2+3 produced l−1 day−1 in the control tank (no enrichment) to over 13 μmol NO2+3 produced l−1 day−1 in the most enriched tank (receiving 18·6 μmol NH4 l−1 day−1). Almost all NO2+3 production was pelagic, little was benthic. Net NO3 production or net NO2 production dominated the net nitrification rates during different seasons. Good correlations were found between various oxidation rates and substrate concentrations. The calculated net nitrite production rates were 10 to 1000 times higher than previously reported rates for open ocean systems, demonstrating the potential importance of nitrification to estuarine systems.  相似文献   

12.
Direct estimation of the oxygen consumption rate in the bottom layer of Mikawa Bay where eutrophication is in progress was attempted usingin situ continuous measurement of oxygen content and other oceanographic parameters including water movement, and a value 0.65 mgl–1 day–1 was obtained in summer. This value is slightly smaller than previous estimates based on the method of incubation or indirect techniques.  相似文献   

13.
The abundance and vertical distribution pattern of a mysidMeterythrops microphthalma were investigated in the Japan Sea. Results from vertical hauls from 602–982 m depth to the surface around Yamato Rise in April 1987 indicated that the dominance (by biomass) ofM. microphthalma was third to fifth of major zooplankton taxa. Vertical distribution investigated at a single station in Toyama Bay in June, September and December 1986 showed that the most part of population of this mysid inhabited consistently below 250 m depth. No marked diurnal vertical migration was evident. Data on body composition and oxygen consumption rate ofM. microphthalma are presented. Water content of the body was 75.6–83.8% of wet weight, and ash was 11.4–20.4% of dry weight. Carbon, hydrogen and nitrogen were 37.9–47.5%, 6.2–7.4% and 9.4–10.1%, respectively, of dry weight. Oxygen consumption rates were 2.2–11.0µl O2 individual–1 hr–1 at 0.5°C, and were directly proportional to body mass. From the comparison with the published data on epipelagic and bathypelagic mysids it is revealed that both body nitrogen composition and oxygen consumption rate expressed as adjusted metabolic rate [AMR02,µl O2 (mg body N)–0.85 hr–1] ofM. microphthalma are intermediate between high epipelagic and low bathypelagic levels, indicating typical mesopelagic features.  相似文献   

14.
《Marine Chemistry》2001,73(3-4):291-303
Oxygen and phosphate measurements from two sections across the Norwegian Atlantic Current, the Gimsøy-NW section from 67.5°N 9°E to 71.5°N 1°E and the Bjørnøya-W section along 74.5°N from 7 to 15°E, are used to estimate oxygen fluxes in the surface layer and between the atmosphere and the ocean. Vertical entrainment velocities of 0.9 m day−1 for the winter season and 0.1 m day−1 for the summer season are found and applied to the upper 300 m. The resulting oxygen fluxes to the surface layer driven by this vertical mixing are 0.58±0.05 and 0.27±0.02 mol O2 m−2 year−1 at the Gimsøy-NW and Bjørnøya-W sections, respectively. Oxygen fluxes to the surface layer due to phytoplankton production are 2.6 and 3.4 mol O2 m−2 year−1, which represent the net community production at the two sections. Estimated uncertainties in these numbers are ±15%. The surface water is a sink for atmospheric oxygen during fall and winter and a source during the productive season for both sections. On an annual basis there is a net uptake of oxygen from the atmosphere, 3.4±0.4 mol O2 m−2 year−1 at the Gimsøy-NW section and 4.9±0.5 mol O2 m−2 year−1 at the Bjørnøya-W. A decrease in temperature of 1°C to 1.5°C seen between the Gimsøy-NW section and the Bjørnøya-W section is the main reason for the increased atmospheric flux of oxygen at the latter section. An oxygen budget made for the area bounded by the two sections gives a net advective flux of oxygen out of the area of approximately 10 mol O2 m−2 year−1. The increased concentration of oxygen corresponding to the decrease in surface layer temperatures going northwards in the Norwegian Atlantic Current is mainly attributed to the air–sea oxygen exchange and phytoplankton production in this area.  相似文献   

15.
The annual net and gross primary production by phytoplankton in Akkeshi Bay Hokkaido, are estimated to be 146±25 g C m–2y–1 and 416±53 g C m–2y–1, respectively. The annual means of the net and gross efficiency between primary production and solar radiation are estimated to be 0.26 % and 0.79 %, respectively.  相似文献   

16.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

17.
Physicochemical features of a typically meromictic lake, Lake Suigetsu, are studied. Vertical distributions of temperature and chlorinity show that the lake is well stratified, and no marked mixing occurs between the upper fresh water and lower salt water. In the chemocline, the vertical gradient of density is large, and the vertical eddy diffusion coefficient is as low as 1.5 × 10–2 cm2 sec.–1 Dissolved oxygen is saturated in the surface portion of the upper water, and then rapidly decreases with depth towards the chemocline, where sulfide first appears and increases towards the bottom. In the chemocline oxygen consumption is prominent process reaching 290 mg 02/m2/day. The oxidation of sulfide, supplied from the underlying water layer, is the main factor causing the oxygen consumption in the chemocline.  相似文献   

18.
JGOFS-KERFIX (KERguelen point FIXe) time-series station, located south of the polar front in the Indian sector of the Antarctic Ocean, was occupied monthly between January 1990 and March 1995. Annual cycles of dissolved inorganic carbon (DIC), total alkalinity (TALK), oxygen (O2) and nutrients (nitrate, silicate, phosphate and ammonia) in the upper ocean are presented for this site. From seasonal drawdown of nutrients and DIC, we estimate a spring–summer net community production of 3.2±0.5 mol m−2 and C/N/P ratios of 100/16/1. The Si/N ratio varies between 1.8 and 3, suggesting low iron concentrations. The spring–summer biogenic silicon export derived from silicate drawdown is 1.18 mol m−2, consistent with model estimates of silicate export at this site. Seasonal and interannual variations of oxygen, nitrate and DIC due to physical and biological processes are quantified using a simple month-to-month budget formulation. From these budgets, an annual net community production of 5.7±3.3 mol m−2 yr−1 is estimated, about twice the averaged spring–summer production, indicating that, at KERFIX, there is a positive net community production throughout the year. Air–sea CO2 fluxes show that KERFIX is a strong CO2 sink for the atmosphere of 2.4–5.1 mol m−2 yr−1 in 1993, depending on the gas exchange formulation used. A 2.1–3.3 mol m−2 yr−1 outgassing of O2 is observed at KERFIX except in 1993 and 1994 where a decreasing trend of temperature induces an increase of O2 solubility.  相似文献   

19.
The production and biomass of microphytobenthos in a Mediterranean mussel farm was studied during 1991–92. Gross and net microphytobenthic production and respiration were calculated from oxygen fluxes in transparent and black bell jars at two stations; sediments under a mussel table and reference sediments, both located at 5 m depth. Net oxygen fluxes were mainly negative under the mussel tables (average −19·5 mg O2 m−2 h−1, CV=132%), and microphytobenthos production could not meet the sediment oxygen demand; in the reference sediments, microphytobenthos production was responsible for net oxygen production (average +13·0 mg O2 m−2 h−1, CV=118%). Benthic respiration rates were, on average, 47·3 mg O2 m−2 h−1(CV=82%) under the tables and 27·7 mg O2 m−2 h−1(CV=45%) in reference sediments. Aerobic respiration could remineralize less than 2% of the biodeposited carbon under the tables, implying that a large amount of organic material is accumulating under the tables, and that most of the degradation will be anaerobic. Gross microbenthic production showed sharp changes between 1991 and 1992 under the mussel tables and for reference sediments (averages 20·98 mg O2 m−2 h−1, CV=135% and 33 mg O2 m−2 h−1, CV=48%, respectively). Despite the negative oxygen balance in the sediments under the tables, microphytobenthos was more productive than phytoplankton in bottom waters. Per unit area, phytoplankton was more productive than microphytobenthos at both stations, especially in the area of the mussel tables, where phytoplanktonic production was enhanced by the excretion products of mussels. Microphytobenthos was composed mainly of diatoms in the sediments under the tables, while in reference sediments, the population was more diverse, with algae containing chlorophyllbalso present. Chlorophyllaconcentration in sediments under the tables was 207 mg m−2(CV=73%) and 95 mg m−2(CV=28%) in reference sediments; the stock of plant pigments was increased under the tables by biodeposition. Microphytobenthos constitutes a compartment with an important contribution in biomass, but also in oxygen production.  相似文献   

20.
N2O Production, Nitrification and Denitrification in an Estuarine Sediment   总被引:1,自引:0,他引:1  
The mechanisms regulating N2O production in an estuarine sediment (Tama Estuary, Japan) were studied by comparing the change in N2O production with those in nitrification and denitrification using an experimental continuous-flow sediment–water system with15N tracer (15N-NO−3 addition). From Feburary to May, both nitrification and denitrification in the sediment increased (246 to 716 μmol N m−2 h−1and 214 to 1260 μmol N m−2 h−1, respectively), while benthic N2O evolution decreased slightly (1560 to 1250 nmol N m−2 h−1). Apparent diffusion coefficients of inorganic nitrogen compounds and O2at the sediment–water interface, calculated from the respective concentration gradients and benthic fluxes, were close to the molecular diffusion coefficients (0·68–2·0 times) in February. However, they increased to 8·8–52 times in May except for that of NO−2, suggesting that the enhanced NO−3 and O2supply from the overlying water by benthic irrigation likely stimulated nitrification and denitrification. Since the progress of anoxic condition by the rise of temperature from February to May (9 to 16 °C) presumably accelerated N2O production through nitrification, the observed decrease in sedimentary N2O production seems to be attributed to the decrease in N2O production/occurrence of its consumption by denitrification. In addition to the activities of both nitrification and denitrification, the change in N2O metabolism during denitrification by the balance between total demand of the electron acceptor and supply of NO−3+NO−2 can be an important factor regulating N2O production in nearshore sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号