首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叶文建  杜萍  寿鹿 《海洋学研究》2021,39(4):91-100
夏季,长江口底层极易发生大面积低氧甚至缺氧.比较2016和2017年夏季长江口缺氧区(DO<2 mg/L)、低氧区(2 mg/L3 mg/L)浮游动物群落(>160μm)特征发现:2016年群落丰度和生物量均表现为缺氧区明显高于低氧区和正常海区;中小型桡足类、胶质浮游动物丰度表现为缺氧区和低氧区均高于正常海区;胶质浮游动物的组成,在低氧程度较严重的2016年夏季,以滤食性的海樽纲和有尾纲为主,在2017年夏季,以肉食性毛颚动物为主.  相似文献   

2.
Since systematic measurements of Louisiana continental-shelf waters were initiated in 1985, hypoxia (oxygen content <2 mg L−1) has increased considerably in an area termed the dead zone. Monitoring and modeling studies have concluded that the expansion of the Louisiana shelf dead zone is related to increased anthropogenically derived nutrient delivery from the Mississippi River drainage basin, physical and hydrographical changes of the Louisiana Shelf, and possibly coastal erosion of wetlands in southern Louisiana. In order to track the development and expansion of seasonal low-oxygen conditions on the Louisiana shelf prior to 1985, we used a specific low-oxygen foraminiferal faunal proxy, the PEB index, which has been shown statistically to represent the modern Louisiana hypoxia zone. We constructed a network of 13 PEB records with excess 210Pb-derived chronologies to establish the development of low-oxygen and hypoxic conditions over a large portion of the modern dead zone for the last 100 years. The PEB index record indicates that areas of low-oxygen bottom water began to appear in the early 1910s in isolated hotspots near the Mississippi Delta and rapidly expanded across the entire Louisiana shelf beginning in the 1950s. Since ~1950, the percentage of PEB species has steadily increased over a large portion of the modern dead zone. By 1960, subsurface low-oxygen conditions were occurring seasonally over a large part of the geographic area now known as the dead zone. The long-term trends in the PEB index are consistent with the 20th-century observational and proxy data for low oxygen and hypoxia.  相似文献   

3.
基于2016—2019年夏季在长江口海域进行的4个航次的生态环境调查,分析了长江口海域季节性低氧对大型底栖动物群落结构的影响。结果表明,2016—2019年长江口海域夏季底层DO最低值为1.51 mg/L,存在不同程度的底层低氧现象。低氧区与非低氧区之间大型底栖动物的种类数量、丰度、生物量和群落结构均存在显著差异。多毛类表现出对低氧较强的耐受能力,为低氧区的主要优势类群,中蚓虫(Mediomastus sp.)、索沙蚕(Lumbrinereis sp.)为低氧区的主要优势种。软体动物、甲壳动物和棘皮动物的分布趋势则与多毛类相反,其中甲壳动物对低氧的耐受能力较弱。MDS多维尺度排序表明,低氧区与非低氧区之间大型底栖动物的群落组成差异明显;CCA分析表明,长江口海域夏季底层低氧已对大型底栖动物的群落结构产生一定程度的影响。  相似文献   

4.
人类活动和自然因素共同但有区别的作用引起了长江口及邻近海域富营养化,造成夏季底层水体低氧现象加剧,成为近海生态健康恶化的重要征兆。本文梳理了国内外学者在该海域低氧研究中获得的重要认识,分析了底层水体溶解氧的潮周期尺度、事件尺度和年际尺度的变化特征,重点从层化与物质输运角度,介绍了长江冲淡水、台湾暖流、海洋锋面、风和潮等过程影响底层水体中氧气消耗或补充的机制,揭示了本海域主要低氧现象分别位于长江口和浙江近海的特征,对比了两处低氧区形成与演变的异同机制。目前,对低氧形成机制的定性认识和多尺度变化特征的了解已经有较好的基础,未来需要从多学科交叉角度加强现场试验和定量研究,掌握低氧的长期演变趋势,研发底层水体低氧的预测预警技术,支撑我国河口近海的生态预警监测工作。  相似文献   

5.
为剖析长江口邻近海域春季硅藻藻华后期藻类沉降与底层水体缺氧现象之间的关系,作者于2011年春季,在长江口南部赤潮区采集了表层沉积物样品,并通过高效液相色谱法(HPLC),对浮游植物色素进行了分析。结果表明,硅藻藻华发生后,表层沉积物中叶绿素a(Chl a)、岩藻黄素(Fuco)和19’-丁酰氧基岩藻黄素(But-Fuco)含量有显著增加,高值区主要分布在调查海域东南侧50 m等深线外侧,与底层低氧水体分布区基本吻合。因此,硅藻藻华后沉降的藻类对于该海域夏季缺氧区的形成应具有一定作用,其具体过程和机制仍有待于研究。  相似文献   

6.
通过对2011年北部湾北部海域春季和夏季溶解氧(DO)及其他环境要素进行分析讨论,发现DO的季节性差异较大,春季DO含量(平均8.11 mg/L)明显高于夏季(平均6.05 mg/L)。夏季北部湾底层部分区域存在DO低值,该低值区常年存在,并且DO最低值逐渐降低、低值区范围逐渐扩大。利用相关性分析和灰色关联度分析的方法,对夏季底层DO低值的成因进行分析发现:夏季底层水体浮游植物产氧作用较弱,海水层化作用强,阻碍了表底层DO的交换;另外底层有机质分解的耗氧作用明显,出现了氧气的净消耗,由此导致夏季底层水体出现DO的低值。同时,由于2011年之后北部湾北部海域陆源污染排放和赤潮的频发使得该海域低氧状况加剧,潜在低氧区逐渐发展为低氧区。  相似文献   

7.
More than 30 years of chemical oxygen demand (COD) and dissolved inorganic nitrogen (DIN) data for the inner area of the Ariake Sea were analyzed with a box model to show the changes in the average seasonal budget and the decadal-scale variation during the summer. The COD peaked in August and March on average. This summertime peak can be explained by an enhanced riverine load and increased primary production. The peak in March suggested additional organic matter production. There were also two peaks in DIN concentration on average: a summertime peak that could be explained by an enhanced riverine load, and a peak in December that was more complicated to explain. From the 1970s to the early 1990s, the bottom water in this area became increasingly hypoxic due to increased COD during the summer, even though there were minimal increases in terrestrial COD and nutrient loads and there were tidal flats covering a widespread area during this period. The increase in COD was caused by increased net ecosystem production, which was due to enhanced primary production induced by an increased freshwater residence time and decreased bivalve grazing. There was a negative feedback control in which hypoxia progressively increased, leading to declines in bivalve biomass, which in turn decreased the grazing pressure limiting primary production, meaning that primary production increased and the area became even more hypoxic. The net DIN production decreased during the 1980s and the 1990s. This was consistent with the change in net ecosystem production according to the COD.  相似文献   

8.
Recently, bivalves have been massively killed by anoxia or hypoxia in summer at the northern part of Isahaya Bay, Japan, which constituted a major problem for fisheries. However, the mechanism behind the occurrence of hypoxic water masses is unclear. It is known that the bottom water dissolved oxygen (DO) in this area is affected by the inflow of seawater into the northern mouth of Isahaya Bay. To understand the mechanism of hypoxia, it is necessary to determine the physical processes that cause changes in the bottom DO concentrations in this area. This study shows that there is a neap-spring tidal variation in bottom DO due to a change in vertical tidal mixing, and it also suggests that the decrease in bottom DO was generated by a baroclinic flow, which is due to the internal tide, and a shear flow, which is induced by the external tide in the bottom boundary layer. In addition, our study suggests that the source of cold and hypoxic water that appears in the bottom layer at low tide is the inner area of the Ariake Sea.  相似文献   

9.
夏季长江口外低氧区的动态特征分析   总被引:5,自引:2,他引:3  
研究长江口外海域夏季低氧区的动态特征具有重要的科学意义和应用价值.通过对长江口外低氧区典型月份历史资料以及该海域生态环境演变的分析,揭示了长江口外海域低氧区北移、氧最低值波动下降和低氧区面积扩大的年代际变化趋势,阐明了低氧区的演变与富营养化以及海洋动力环境之间的关系,并对2006年夏半年(6-10月)低氧区的位置变化过...  相似文献   

10.
Observation data obtained in the 32°N transect (transect E) in 1975–1995 were used to analyze the long-term changes in dissolved oxygen (DO) concentration and near-bottom hypoxic water in the East China Sea (ECS). A declining trend in annual average DO concentration and the degree of DO saturation was observed. Consequently, the apparent oxygen utilization in the western waters of transect E was on the rise. There was a seasonal hypoxic phenomenon in near-bottom water in the western water of transect E. The width of hypoxic water formed in summer gradually extended eastward along the continental shelf (transect E) at the rate of 3.12 km year−1. Three potential reasons might have caused the formation and maintenance of near-bottom hypoxic water. First, the special hydrological topography and hypoxic deep water of the Taiwan Warm Current provided a backdrop for the hypoxic zone. Second, in summer, the strength of water column stratification restricts water exchange. Third is the occurrence and decay of the phytoplankton bloom. In surface water, nutrient concentrations increased gradually, and chlorophyll (Chl a), primary production, and phytoplankton biomass in summer increased. On the other hand, the community structure of phytoplankton, zooplankton, and zoobenthos became simple. Blooming phytoplankton consumed plenty of nutrients in the surface, but the upwelling of nutritious bottom water was suppressed by the strong thermocline. As a result, sinking of phytoplankton was enhanced because of nutrient deficiency. In recent years, a serious lack of zoobenthos in the study area corresponded to a higher degree of hypoxia. This phenomenon would have a major effect on the evolution of ecological dynamic systems in the ECS.  相似文献   

11.
严律  朱首贤 《海洋通报》2021,40(2):133-141
利用2018年夏季在西南黄海的现场调查资料,分析了海温、盐度和溶解氧(dissoloved oxygen,DO)分布特征.海区西侧的江苏沿海有明显的冷水带,冷水带对应表层较高的DO浓度.在海区南侧的长江口附近,盐度由南向北升高,上部海水DO浓度高,下部海水DO浓度低.综合现场观测数据、CCMP (Cross Calib...  相似文献   

12.
任广法 《海洋科学》1987,11(3):33-38
本文讨论了1984年5月、8月、11月调查的黄河口区溶解氧的分布。黄河口区溶解氧的分布主要受水温的影响,在春季还受硅藻的影响,而夏季受微型浮游植物的影响。 夏季,黄河口门底层水的表观耗氧量高达2.04ml╱L。反映了黄河悬浮物所携带的有机物氧化的结果。  相似文献   

13.
基于2018年早春和夏季长江口邻近海域的调查数据,分析溶解氧(DO)的时空分布,并讨论其影响因素.结果表明,夏季DO浓度变化范围为1.58~9.37 mg/L,浮游生物光合作用产生的DO是夏季表层水体过饱和的主要因素;夏季调查海域受台湾暖流北上引起海水层化加强,同时水体富营养化导致表层生物大量繁殖所引起有机碎屑的沉降和耗氧分解作用是底层低氧区存在的主要因素.夏季在台湾暖流影响下底层水体表观耗氧量(AOU)与营养盐成正相关关系,底层有机物耗氧降解过程与营养盐的再生密切相关.早春DO浓度变化范围为7.90~10.1 mg/L,长江口外北部海域和浙江近岸海域海水混合均匀,DO浓度主要受温度控制,而台湾暖流影响区海水出现层化现象,其低DO含量也为低氧区的形成奠定了基础.  相似文献   

14.
Eutrophication often causes hypoxia in estuarine and coastal systems, but the mechanisms that control hypoxic events vary among estuaries and are often difficult to discern. We monitored surface and bottom dissolved oxygen (DO) in the Upper Newport Bay (UNB), a tidally mixed estuary in southern California subject to anthropogenic nutrient loading, eutrophication and hypoxia. Our goal was to identify the environmental factors regulating DO dynamics. Six hypoxic events occurred between June and November and were associated with a combination of low solar radiation, increased freshwater discharge following precipitation, and enhanced haline stratification during reduced tidal range periods. At the head of the estuary, high macroalgal biomass and pronounced haline stratification resulted in high DO in the surface layer and low DO in the bottom layer. Oxygen-rich and oxygen-poor waters were transported down-estuary by ebb tides, resulting in DO heterogeneity throughout the UNB. Cross-wavelet analysis illustrated the down-estuary propagation of high/low DO signal correlated with the phases of diurnal photosynthetic and semi-diurnal tidal cycles.  相似文献   

15.
The Bonnet Carré Spillway, located 28 miles northwest of New Orleans, was constructed in the early 1930s as part of an integrated flood-control system for the lower Mississippi River system. From 11 April to 8 May 2008, Mississippi River water was diverted through the spillway into the 629-square-mile Lake Pontchartrain, which is hydraulically connected to the Gulf of Mexico. On 8 April, prior to the opening of the spillway, water-quality instruments were deployed and recorded hourly measurements of water temperature, dissolved oxygen, specific conductance, pH, and nitrate. Discrete water-quality and phytoplankton (algae) samples were collected in Lake Pontchartrain from 8 April to 3 October 2008 to assess the water-quality nutrient enrichment effects of the diversion on the lake. The maximum influence of river water in the southern portion of the lake was captured with continuous (hourly) monitoring of nitrate concentrations, and field measurements such as of specific conductance during the critical period in late April to early May. By late May, the deployed instruments had recorded the arrival, peak, and decline of selected constituents associated with the freshwater influx from the Mississippi River/Bonnet Carré Spillway diversion. The continuous monitoring data showed the short-term interactions of high-nitrate, low-specific conductance river water and low-nitrate, high-specific conductance lake water. The phytoplankton community composition, as an indicator of water quality, illustrated an extended response from the river water evident even after the continuous and discrete samples indicated that the lake had returned to pre-diversion conditions. The initial phytoplankton community response to nutrient increases was related to accumulations of diatoms. During periods of low nutrient concentrations, accumulations of blue-greens occurred by July and August. As blue-green algae cell densities and biovolumes increased in the summer, so did the species richness of blue-green algae, particularly the harmful algae bloom taxa. Cell densities and biovolume of the phytoplankton lake indicator taxa Skeletonema costatum, Anabaena sp., and Cylindrospermopsis raciborskii were highest and dominated the diatom and blue-green algae communities during the period of most river water influence on the lake and immediately following the freshwater inflows. The dominance and recession of these indictor taxa reflect the dramatic changes that occurred in the phytoplankton community in response to an increase in nutrient-rich freshwater from the diversion into the lake, and not normal seasonal phytoplankton compositional differences. Water-quality data indicated a gradual reversion to pre-diversion lake conditions by June to July, but shifts in the phytoplankton composition were still evident through August 2008. Observations from this study were similar to results from previous studies of Mississippi River/Bonnet Carré Spillway diversion opening in 1997.  相似文献   

16.
澳门内港及附近水域(包括内港、筷子基北湾和南湾)历来是澳门海域富营养化最严重的区域, 水质恶化常引发大规模鱼类死亡。本文利用近10年的澳门水质监测统计数据, 采用三维水动力—水质模型模拟了澳门内港溶解氧的分布特征和水文动力过程。研究结果表明, 内港区低氧现象为澳门海域潮、径流物理及生化过程综合作用的结果。内港没有明显的外海往复流和水体层化现象, 其整体的弱动力和筷子基水域的半封闭造成污染物滞留作用, 是形成低氧区的关键物理机制。筷子基水体自身生化耗氧是导致内港低氧的驱动要素, 底泥耗氧进一步加剧了内港的低氧程度。  相似文献   

17.
Hypoxia has occurred in Upper Charlotte Harbor, a shallow (∼3 m) estuary in Southwest Florida, during moderate to high freshwater flows from the Peace and Myakka Rivers and after hurricanes, due to nutrient loading and vertical stratification. This paper studies the annual hypoxia and water quality dynamics in Upper Charlotte Harbor in 2000, using CH3D-IMS, an integrated modeling system which includes coupled models of circulation, wave, sediment transport, and water quality. The CH3D-IMS simulations showed that bottom-water hypoxic conditions occur during periods with relatively steady moderate to high (5–40 m3/s) freshwater inflows and sediment oxygen demand (SOD). During periods of relatively steady moderate to high river discharge, strong vertical salinity stratification results in reduced vertical mixing which prevents surface water from supplying dissolved oxygen (DO) to bottom water where SOD continuously consumes DO. There was significant temporal fluctuation of the hypoxic water volume, as a result of significant temporal variation in vertical turbulent mixing associated with combinations of spring-neap tides and river discharge. The validated modeling system could be used to forecast hypoxia.  相似文献   

18.
Based on the seasonal surveying data and long-term data, the annual changes in the geographical locations, occurrence frequency, affected areas and the minimum oxygen level as well as the formation mechanism of the summer hypoxia off the Changjiang estuary are summarized and discussed in this paper. The historical data indicates that there were episodes of hypoxia in the past 50 years but not every year, and the event of summer hypoxia could be traced back to as early as late 1950s off the Changjiang estuary. The minimum oxygen levels in the hypoxia zone did not show any decline in the past 50 years, but all the events with large size of affected area (>5000 km2) were observed after the late 1990s, suggesting an enlarging trend. The author argues that the development of summer hypoxia off the Changjiang estuary was related not only to stratification and input of suspended particulate matter, but also to the inflow of Taiwan warm current water as well as the bottom topography.  相似文献   

19.
近50年来长江口及邻近海域溶解氧的时空分布变化   总被引:2,自引:0,他引:2  
长江口及邻近海域是我国最重要的河口海岸区域之一。基于多源、长时间序列的溶解氧资料,本文对近50年来长江口及邻近海域溶解氧的时空分布特征进行了研究。结果表明,近50年来,长江口及邻近海域表层溶解氧基本保持稳定,仅冬季呈现出一定的上升趋势。冬、春两季溶解氧浓度范围在7-11 mg/L,夏、秋两季为6-8 mg/L。长江口及邻近海域低氧值首先出现于5月,浙闽沿岸底层海域形成低氧水舌。水舌在夏季不断向北推进,北部断面低氧程度明显高于南部断面。到了秋季,低氧区逐渐消退,至冬季完全消失。在过去的50年中,长江口及邻近海域的低氧现象始于20世纪80年代。2000年起,低氧程度逐渐加深,低氧分布深度逐渐升高。本文基于大量的溶解氧历史数据开展研究,研究结论对于探讨长江口及邻近海域低氧区的发展变化具有非常重要的意义。  相似文献   

20.
Seasonal, sub-seasonal and spatial fluctuations in bottom dissolved oxygen (DO) were examined in St Helena Bay, South Africa’s largest and most productive embayment, between November 2013 and November 2014. Alongshore bay characteristics were assessed through comparison of variables along the 50-m depth contour. A mean coefficient of variation of 0.35 provided a measure of the relative variability of near-bottom DO concentrations along this contour. Consistently lower DO concentrations in the southern region of the bay in summer and autumn are attributed to enhanced retention. Across-shelf transects captured the seasonal development of hypoxia in relation to the distribution of phytoplankton biomass. Exceptional dinoflagellate blooms form extensive subsurface thin layers preceding the autumn DO minima in the south of the bay, prior to winter ventilation of the bottom waters. The seasonal decline in DO concentrations in the bottom waters was marked by sub-seasonal events of hypoxia, and ultimately anoxia linked to episodic deposition of organic matter, as indicated by increases in bottom chlorophyll-a concentrations. Seasonal changes in bottom water macronutrient concentrations followed trends in apparent oxygen utilisation (AOU), both of which mirrored DO concentrations. In the south of the bay, nitrogen loss through denitrification/anammox in suboxic waters was indicated by a dissolved inorganic N deficit in the bottom waters, which was most pronounced in autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号