首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation of permeability field in a reservoir model that matchs historical dynamic production data requires an inverse calculation. A gradient method is typically used to solve the inverse minimization problem and requires sensitivity coefficients of reservoir responses, e.g. fractional flow rate or pressure, with respect to the change in the permeability. This paper presents a novel semi-analytical streamline-based method for computing such sensitivity coefficients under the framework of two-phase (oil-water) flow conditions. This method is shown to be significantly faster and generate permeability fields with lower objective function than the traditional perturbation method. The method decomposes the multiple-dimensional full flow problem into multiple 1D problems along streamlines. The sensitivity of fractional flow rate at the production well is directly related to the sensitivity of time-of-flight (TOF) along each individual streamline and the sensitivity of pressure at grid cells along the streamline. The sensitivity of TOF of a streamline can be obtained analytically. The sensitivity of pressure is obtained as part of a fast single phase flow simulation. The proposed method is implemented in a geostatistically based inverse technique, called the sequential self-calibration (SSC) method. Results for fractional flow rate sensitivities are presented and compared with the traditional perturbation method. This new method can be easily extended to compute sensitivity coefficients of saturation (concentration) data.  相似文献   

2.
Travel time of marked fluid particles along arbitrary streamlines in arbitrary porous streamtubes is estimated from below based on the Cauchy–Bunyakovskii (Schwartz) and Jensen inequalities. In homogeneous media the estimate is strict and expressed through the length of the streamline, hydraulic conductivity, porosity and the head fall. The minimum is attained at streamlines of unidirectional flow. The bounds for heterogeneous soils, non-Darcian flows and unsaturated media are also written. If such bounds are attained the corresponding trajectories become brachistochrones. For example, in a two-layered aquifer and seepage perpendicular to the layers there is a unique conductivity–porosity ratio which makes a broken streamline brachistocronic. Similarly, if conductivities of two layers are fixed there is a unique incident angle between flow in one medium and the interface which makes a refracted streamline brachistocronic.  相似文献   

3.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The discontinuous spectral Galerkin method uses a finite-element discretization of the groundwater flow domain with basis functions of arbitrary order in each element. The independent choice of the basis functions in each element permits discontinuities in transmissivity in the flow domain. This formulation is shown to be of high order accuracy and particularly suitable for accurately calculating the flow field in porous media. Simulations are presented in terms of streamlines in a bidimensional aquifer, and compared with the solution calculated with a standard finite-element method and a mixed finite-element method. Numerical simulations show that the discontinuous spectral Galerkin approximation is more efficient than the standard finite-element method (in computing fluxes and streamlines/pathlines) for a given accuracy, and it is more accurate on a given grid. On the other hand the mixed finite-element method ensures the continuity of the fluxes at the cell boundaries and it is particular efficient in representing complicated flow fields with few mesh points. Simulations show that the mixed finite-element method is superior to the discontinuous spectral Galerkin method producing accurate streamlines even if few computational nodes are used. The application of the discontinuous Galerkin method is thus of interest in groundwater problems only when high order and extremely accurate solutions are needed.  相似文献   

5.
In studies on river channel flow turbulence, it is often the case that the measured mean vertical velocity is different from zero, indicating that the frame of reference of the current meter is not parallel to the flow streamline. This situation affects the estimate of Reynolds shear stress in the streamwise and vertical planes and consequently the analysis of the flow turbulent structure. One way to solve this problem is to correct data by applying a rotation and this is reviewed in the first part of the paper. However, in fluvial geomorphology, the studied flow is often complex and streamlines may exhibit significant changes from one point of measurement to the other. In this context, applying a rotation complicates the situation more than it simplifies it. The second part of this paper examines the question of velocity data correction in complex flows using a field example of the turbulent boundary layer over a very rough gravel bed and a laboratory example taken from flow at a river channel confluence. In both cases, velocity vectors are spatially variable. In the first case, errors in the Reynolds shear stress estimates are relatively low (ranging from −13 to 7 per cent/deg) while in the second case, they are much larger (−200 to 164 per cent/deg). The significance of these errors on the interpretation of turbulence statistics in river channel flows is discussed. We propose that corrections should be applied in all clear cases of sensor misalignment and when the frame of reference changes spatially and temporally. However, no corrections should be used where different flow velocity vector orientations, not sensor misalignment, are responsible for the mean vertical velocity differing from zero.  相似文献   

6.
We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. The method uses a mixed multiscale finite-element method (MMsFEM) to solve the pressure equation on a coarse grid and a streamline-based technique to solve the fluid transport on a fine-scale subgrid. The MMsFEM is based on the construction of special approximation velocity spaces that are adaptive to the local properties of the differential operator. As such, MMsFEM produces a detailed subgrid velocity field that reflects the impact of the fine-scale heterogeneous structures. By combining MMsFEM with rapid streamline simulation of the fluid transport, we aim towards a numerical scheme that facilitates routine reservoir simulation of large heterogeneous geomodels without upscaling. The new method is applied to two different test cases. The first test case consists of two (strongly) heterogeneous quarter five-spot problems in 2D. The second test case is a 3D upscaling benchmark taken from the 10th SPE Comparative Solution Project, a project whose purpose is to compare and validate upscaling techniques. The test cases demonstrate that the combination of multiscale methods and streamlines is a robust and viable alternative to traditional upscaling-based reservoir simulation.  相似文献   

7.
The nonhorizontal‐model‐layer (NHML) grid system is more accurate than the horizontal‐model‐layer grid system to describe groundwater flow in an unconfined sloping aquifer on the basis of MODFLOW‐2000. However, the finite‐difference scheme of NHML was based on the Dupuit‐Forchheimer assumption that the streamlines were horizontal, which was acceptable for slope less than 0.10. In this study, we presented a new finite‐difference scheme of NHML based on the Boussinesq assumption and developed a new package SLOPE which was incorporated into MODFLOW‐2000 to become the MODFLOW‐SP model. The accuracy of MODFLOW‐SP was tested against solution of Mac Cormack (1969). The differences between the solutions of MODFLOW‐2000 and MODFLOW‐SP were nearly negligible when the slope was less than 0.27, and they were noticeable during the transient flow stage and vanished in steady state when the slope increased above 0.27. We established a model considering the vertical flow using COMSOL Multiphysics to test the robustness of constrains used in MODFLOW‐SP. The results showed that streamlines quickly became parallel with the aquifer base except in the narrow regions near the boundaries when the initial flow was not parallel to the aquifer base. MODFLOW‐SP can be used to predict the hydraulic head of an unconfined aquifer along the profile perpendicular to the aquifer base when the slope was smaller than 0.50. The errors associated with constrains used in MODFLOW‐SP were small but noticeable when the slope increased to 0.75, and became significant for the slope of 1.0.  相似文献   

8.
A Lagrangian particle tracking scheme has been extended to simulate advective transport through coupled surface and subsurface flows. This extended scheme assumes a two-dimensional flow field for the overland domain and a three-dimensional flow field for the subsurface domain. Moreover it is assumed that the flow fields are simulated by a cell centered finite difference method. Pathlines in both the subsurface and the overland domain are simulated by classical particle tracking methods. Exchange of particles between the two domains is simulated by newly-developed algorithms presented in this study. Different algorithms are used depending on the direction of the exchange across the interface between the two domains. In the subsurface domain knowledge about a particle’s pathline is enough to detect a transfer to the surface domain and the solution is straightforward. However, in the two-dimensional overland domain pathlines are parallel to the land surface. Therefore the velocity field in the overland domain alone cannot be used to detect a transfer to the subsurface. We propose a relatively simple algorithm to estimate the probability of transfer to the subsurface domain. It is shown that this algorithm can also be used to handle the transfer from the overland domain to the atmosphere domain. The algorithm to estimate the transfer probabilities is based on the mass balance of water on a streamtube aligned with the particle’s pathline. This newly developed technique ensures that transit time distributions can be simulated accurately. These new relationships are implemented in an existing particle tracking code and are verified using analytical solutions for transit times.  相似文献   

9.
Analysis of a vertical dipole tracer test in highly fractured rock   总被引:1,自引:0,他引:1  
The results of a vertical dipole tracer experiment performed in highly fractured rocks of the Clare Valley, South Australia, are presented. The injection and withdrawal piezometers were both screened over 3 m and were separated by 6 m (midpoint to midpoint). Due to the long screen length, several fracture sets were intersected, some of which do not connect the two piezometers. Dissolved helium and bromide were injected into the dipole flow field for 75 minutes, followed by an additional 510 minutes of flushing. The breakthrough of helium was retarded relative to bromide, as was expected due to the greater aqueous diffusion coefficient of helium. Also, only -25% of the total mass injected of both tracers was recovered. Modeling of the tracer transport was accomplished using an analytical one-dimensional flow and transport model for flow through a fracture with diffusion into the matrix. The assumptions made include: streamlines connecting the injection and withdrawal point can be modeled as a dipole of equal strength, flow along each streamline is one dimensional, and there is a constant Peclet number for each streamline. In contrast to many other field tracer studies performed in fractured rock, the actual travel length between piezometers was not known. Modeling was accomplished by fitting the characteristics of the tracer breakthrough curves (BTCs), such as arrival times of the peak concentration and the center of mass. The important steps were to determine the fracture aperture (240 microm) based on the parameters that influence the rate of matrix diffusion (this controls the arrival time of the peak concentration); estimating the travel distance (11 m) by fitting the time of arrival of the centers of mass of the tracers; and estimating fracture dispersivity (0.5 m) by fitting the times that the inflection points occurred on the front and back limbs of the BTCs. This method works even though there was dilution in the withdrawal well, the amount of which can be estimated by determining the value that the modeled concentrations need to be reduced to fit the data (approximately 50%). The use of two tracers with different diffusion coefficients was not necessary, but it provides important checks in the modeling process because the apparent retardation between the two tracers is evidence of matrix diffusion and the BTCs of both tracers need to be accurately modeled by the best fit parameters.  相似文献   

10.
Patterns and Rates of Ground-Water Flow on Long Island, New York   总被引:3,自引:0,他引:3  
Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.  相似文献   

11.
《国际泥沙研究》2020,35(4):386-394
Sediment transport simulations are important in practical engineering. In this study, a graphics processing unit (GPU)-based numerical model coupling hydrodynamical and morphological processes was developed to simulate water flow, sediment transport, and morphological changes. Aiming at accurately predicting the sediment transport and sediment scouring processes, the model resolved the realistic features of sediment transport and used a GPU-based parallel computing technique to the accelerate calculation. This model was created in the framework of a Godunov-type finite volume scheme to solve the shallow water equations (SWEs). The SWEs were discretized into algebraic equations by the finite volume method. The fluxes of mass and momentum were computed by the Harten, Lax, and van Leer Contact (HLLC) approximate Riemann solver, and the friction source terms were calculated by the proposed a splitting point-implicit method. These values were evaluated using a novel 2D edge-based MUSCL scheme. The code was programmed using C++ and CUDA, which could run on GPUs to substantially accelerate the computation. The aim of the work was to develop a GPU-based numerical model to simulate hydrodynamical and morphological processes. The novelty is the application of the GPU techniques in the numerical model, making it possible to simulate the sediment transport and bed evolution in a high-resolution but efficient manner. The model was applied to two cases to evaluate bed evolution and the effects of the morphological changes on the flood patterns with high resolution. This indicated that the GPU-based high-resolution hydro-geomorphological model was capable of reproducing morphological processes. The computational times for this test case on the GPU and CPU were 298.1 and 4531.2 s, respectively, indicating that the GPU could accelerate the computation 15.2 times. Compared with the traditional CPU high-grid resolution, the proposed GPU-based high-resolution numerical model improved the reconstruction speed more than 2.0–12.83 times for different grid resolutions while remaining computationally efficient.  相似文献   

12.
In this work we visualize tsunami and earthquake simulation results with graphics hardware acceleration. The rapid improvement in the computational power of graphics hardware and its programmability has made general computation on Graphics Processing Units (GPUs) very compelling. We generate Synthetic InSAR images using GPUs. Interference phenomena have formed the underlying theory for Interferometric Synthetic Aperture Radar (InSAR) in unveiling dynamical Earth movements. In our approach light path differences are defined by the surface values to be visualized. These path differences then modulate the lighting intensity to generate the interference patterns. We can interactively visualize surface deformation patterns by leveraging the computational power of GPUs. Our visualization method is applied to simulations of rupture fault displacements during the tsunamogenic earthquake events, which are vital to understanding the subsequent wave propagation. We also integrate the visualization results into Google Earth virtual globe to provide the geological context of the visualized regions.  相似文献   

13.
For a high-velocity stable flow through a periodic corrugated channel representing an element of porous medium, we suggest splitting the overall nonlinear macroscopic effects into two kinds of different physical origin: a pure inertia effect produced by the convective term of Navier–Stokes equations and an inertia–viscous cross effect representing a variation of the viscous dissipation due to a streamline deformation by inertia forces. We will show that the inertia–viscous cross effects may be revealed by simulating a periodic flow, whilst the pure inertia effects are produced by the microscale flow nonperiodicity. We will reveal the individual flow law for each nonlinear component and analyze the relative role of both components numerically by using the finite element method applied to the Navier–Stokes equations. Both the pure inertia and the inertia–viscous cross effects are revealed to be exponential prior to quadratic or cubic ones. The influence of the dead volume is analyzed. The inertia–viscous cross phenomena are shown to be negligible when the flow structure is clearly nonperiodic.  相似文献   

14.
非均匀介质热蠕变流动的数值求解   总被引:5,自引:1,他引:4       下载免费PDF全文
针对非均匀介质中热蠕变流动问题,给出了有限单元方法与网格-粒子方法联合求解新技术,即有限单元方法求解欧拉网格节点上的未知量,分布于单元内部作为物质成分标记的粒子反映变形过程.有限元法求解动量方程和连续性方程时引入了速度场和压力场等阶插值的压力场稳定的Petrov Galerkin方法,求解能量方程时采用了流线迎风Petrov Galerkin方法,网格-粒子算法中采用双线性插值与有限单元插值函数对应.有限单元计算与网格-粒子计算相对独立,两种方法计算的数据通过有限单元节点传递.同时,实现了三角形单元的算法和程序,解决了复杂结构条件下不规则网格计算的问题.通过经典方腔热对流问题验证了程序,给出了不规则形态块体沉降算例,并分析了数值解的稳定性.  相似文献   

15.
16.
W. T. Sloan  J. Ewen 《水文研究》1999,13(6):823-846
A method has been developed to simulate the long‐term migration of radionuclides in the near‐surface of a river catchment, following their release from a deep underground repository for radioactive waste. Previous (30‐year) simulations, conducted using the SHETRAN physically based modelling system, showed that long‐term (many decades) simulations are required to allow the system to reach steady state. Physically based, distributed models, such as SHETRAN, tend to be too computationally expensive for this task. Traditional lumped catchment‐scale models, on the other hand, do not give sufficiently detailed spatially distributed results. An intermediate approach to modelling has therefore been developed which allows flow and transport processes to be simulated with the spatial resolution normally associated with distributed models, whilst being computationally efficient.The approach involves constructing a lumped model in which the catchment is represented by a number of conceptual water storage compartments. The flow rates to and from these compartments are prescribed by functions that summarize the results from physically based distributed models run for a range of characteristic flow regimes. The physically based models used were, SHETRAN for the subsurface compartments, a particle tracking model for overland flow and an analytical model for channel routing. One important advantage of the method used in constructing the lumped model is that it makes down scaling possible, in the sense that fine‐scale information on the distributed hydrological regime, as simulated by the physically based distributed models, can be inferred from the variables in the lumped model that describe the hydrology at the catchment scale. A 250‐year flow simulation has been run and the down scaling process used to infer a 250‐year time‐series of three‐dimensional velocity fields for the subsurface of the catchment. This series was then used to drive a particle tracking simulation of contaminant migration. The concentration and spatial distribution of contaminants simulated by this model for the first 30 years were in close agreement with SHETRAN results. The remaining 220 years highlighted the fact that some of the most important transport pathways to the surface carry contaminants only very slowly so both the magnitude and spatial distribution of concentration in surface soils are not apparent over the shorter SHETRAN simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
1 INTRODUCTION There were many flood disasters in China in recent years. When the water level in a river is very high, weak parts of its dike may be destroyed resulted in the submersion of the protected land and properties. It is of significance for decision-makers to exactly predict the processes of flood propagation during flood control. There are many modes of dike bursting, such as seepage destroying by overflow on top of dike caused by dike body sinking induced by piping and soil fl…  相似文献   

18.
A physically based inverse method is developed using hybrid formulation and coordinate transform to simultaneously estimate hydraulic conductivity tensors, steady‐state flow field, and boundary conditions for a confined aquifer under ambient flow or pumping condition. Unlike existing indirect inversion techniques, the physically based method does not require forward simulations to assess model‐data misfits. It imposes continuity of hydraulic head and Darcy fluxes in the model domain while incorporating observations (hydraulic heads, Darcy fluxes, or well rates) at measurement locations. Given sufficient measurements, it yields a well‐posed inverse system of equations that can be solved efficiently with coarse grids and nonlinear optimization. When pumping and injection are active, well rates are used as measurements and flux sampling is not needed. The method is successfully tested on synthetic aquifer problems with regular and irregular geometries, different hydrofacies and flow patterns, and increasing conductivity anisotropy ratios. All problems yield stable inverse solutions under increasing head measurement errors. For a given set of observations, inversion accuracy is strongly affected by the conductivity anisotropy ratio. Conductivity estimation is also affected by flow pattern: within a hydrofacies, when Darcy flux component is very small, the corresponding directional conductivity perpendicular to streamlines becomes less identifiable. Finally, inversion is successful even if the location of aquifer boundaries is unknown. In this case, the inversion domain is defined by the location of the measurements.  相似文献   

19.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   

20.
《Advances in water resources》2007,30(4):1027-1045
Streamline methods have shown to be effective for reservoir simulation. For a regular grid, it is common to use the semi-analytical Pollock’s method to obtain streamlines and time-of-flight coordinates (TOF). The usual way of handling irregular grids is by trilinear transformation of each grid cell to a unit cube together with a linear flux interpolation scaled by the Jacobian. The flux interpolation allows for fast integration of streamlines, but is inaccurate even for uniform flow. To improve the tracing accuracy, we introduce a new interpolation method, which we call corner-velocity interpolation. Instead of interpolating the velocity field based on discrete fluxes at cell edges, the new method interpolates directly from reconstructed point velocities given at the corner points in the grid. This allows for reproduction of uniform flow, and eliminates the influence of cell geometries on the velocity field. Using several numerical examples, we demonstrate that the new method is more accurate than the standard tracing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号