首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Fragility curves for risk-targeted seismic design maps   总被引:1,自引:0,他引:1  
Seismic design using maps based on “risk-targeting” would lead to an annual probability of attaining or exceeding a certain damage state that is uniform over an entire territory. These maps are based on convolving seismic hazard curves from a standard probabilistic analysis with the derivative of fragility curves expressing the chance for a code-designed structure to attain or exceed a certain damage state given a level of input motion, e.g. peak ground acceleration (PGA). There are few published fragility curves for structures respecting the Eurocodes (ECs, principally EC8 for seismic design) that can be used for the development of risk-targeted design maps for Europe. In this article a set of fragility curves for a regular three-storey reinforced-concrete building designed using EC2 and EC8 for medium ductility and increasing levels of design acceleration \((\hbox {a}_\mathrm{g})\) is developed. These curves show that structures designed using EC8 against PGAs up to about 1 m/s \(^{2}\) have similar fragilities to those that respect only EC2 (although this conclusion may not hold for irregular buildings, other geometries or materials). From these curves, the probability of yielding for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 0.14 ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 0.85 ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) whereas the probability of collapse for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 1.7 \(\times 10^{-7}\) ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 1.0 \(\times 10^{-5}\) ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) .  相似文献   

2.
Equilibria calculations of high-temperature volcanic gases from lava lakes are carried out on the basis of best volcanic gas samples. The equilibrium gas composition at temperatures from 800° to 1400°K and pressures up to 25 kilobars (in ideal gas system) was calculated using the free energy minimization model as well as the Newton-Raphson methods. It is shown that the juvenile «magmatic gas » of basaltic magma consists of three components: H2O, SO2, CO2; the water vapor being about 60%. The increase of temperature under constant pressure results in the increase of the SO2 concentration and in the simultaneous decrease of H2S. Under the same conditions the ratios CO/CO2 and H2/H2O are found to increase. Methane cannot be a component of «magmatic gas» corresponding to the elemental composition of basaltic lava gases. The calculated values of \(P_{O_2 } \) are in good agreement with the experimental data obtained from direct measurements of \(P_{O_2 } \) in lava lakes and experiments with basaltic melts.  相似文献   

3.
We tested attenuation relations obtained for different regions of the world to verify their suitability to predict strong-motion data recorded by Medellín and Aburrá Valley Accelerographic Networks. We used as comparison criteria, the average of the difference between the observed and the predicted data as a function of epicenter distance and its standard deviation. We also used the approach developed by Sherbaum et al. (Bull Seism Soc Am 94:2164–2185, 2004) that provides a method to evaluate the overall goodness-of-fit of ground-motion prediction equations. The predictive models selected use a generic focal depth. We found that this parameter has an important influence in the ground-motion predictions and must be taken into account as an independent variable. We also found important to characterize the local soil amplification to improve the attenuation relations. We found empirical relations for peak horizontal acceleration PGA and velocity PGV based on the Kamiyama and Yanagisawa (Soils Found 26:16–32, 1986) approach. $$\begin{aligned} \log _{10} (PGA)=0.5886M_L -1.0902\log _{10}(R)-0.0035H+C_{st}\pm 0.\text{29} \end{aligned}$$ $$\begin{aligned} \log _{10} (PGV)=0.7255M_L -1.8812\log _{10}(R)-0.0016H+C_{st}\pm 0.36 \end{aligned}$$ where PGA is measured in cm/s $^{2}$ and PGV in cm/s, $M_{L}$ is local magnitude in the range 2.8–6.5, $R$ is epicentral distance up to 290 km, $H$ is focal depth in km and $C_{st}$ is a coefficient that accounts for the site response due to soil conditions of each recording station. The introduction of focal depth and local site conditions as independent variables, minimize the residuals and the dispersion of the predicted data. We conclude that $H$ and $C_{st}$ are sensitive parameters, having a strong influence on the strong-motion predictions. Using the same functional form, we also propose an empirical relation for the root mean square acceleration a $_\mathrm{rms}$ : $$\begin{aligned} \log _{10} \left( {a_{rms} } \right)=0.4797M_L -1.1665\log _{10} (R)-0.00201H+C_{st}\pm 0.40 \end{aligned}$$ where a $_\mathrm{rms}$ is measured in cm/s $^{2}$ , from the S-wave arrival and using a window length equal to the rupture duration. The other variables are the same as those for PGA and PGV. The site correction coefficients $C_{st}$ found for PGA, PGV and a $_\mathrm{rms}$ show a similar trend indicating a good correlation with the soil conditions of the recording sites.  相似文献   

4.
The seismic behaviour of caisson foundations supporting typical bridge piers is analysed with 3D finite elements, with due consideration to soil and interface nonlinearities. Single-degree-of freedom oscillators of varying mass and height, simulating heavily and lightly loaded bridge piers, founded on similar caissons are studied. Four different combinations of the static ( $\text{ FS }_\mathrm{V}$ FS V ) and seismic ( $\text{ FS }_\mathrm{E}$ FS E ) factors of safety are examined: (1) a lightly loaded ( $\text{ FS }_\mathrm{V}= 5$ FS V = 5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson, (2) a lightly loaded seismically over-designed ( $\text{ FS }_\mathrm{E} >1$ FS E > 1 ) caisson, (3) a heavily loaded ( $\text{ FS }_\mathrm{V} = 2.5$ FS V = 2.5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson and (4) a heavily loaded seismically over-designed caisson. The analysis is performed with use of seismic records appropriately modified so that the effective response periods (due to soil-structure-interaction effects) of the studied systems correspond to the same spectral acceleration, thus allowing their inelastic seismic performance to be compared on a fair basis. Key performance measures of the systems are then contrasted, such as: accelerations, displacements, rotations and settlements. It is shown that the performance of the lightly loaded seismically under-designed caisson is advantageous: not only does it reduce significantly the seismic load to the superstructure, but it also produces minimal residual displacements of the foundation. For heavily loaded foundations, however ( $\text{ FS }_{V} = 2.5$ FS V = 2.5 ), the performance of the two systems (over and under designed) is similar.  相似文献   

5.
6.
A damaging seismic sequence hit a wide area mainly located in the Emilia-Romagna region (Northern Italy) during 2012 with several events of local magnitude \(\hbox {M}_\mathrm{l} \ge 5\) , among which the \(\hbox {M}_\mathrm{l}\) 5.9 May 20 and the \(\hbox {M}_\mathrm{l}\) 5.8 May 29 were the main events. Thanks to the presence of a permanent accelerometric station very close to the epicentre and to the temporary installations performed in the aftermath of the first shock, a large number of strong motion recordings are available, on the basis of which, we compared the recorded signals with the values provided by the current Italian seismic regulations, and we observed several differences with respect to horizontal components when the simplified approach for site conditions (based on Vs30 classes) is used. On the contrary, when using the more accurate approach based on the local seismic response, we generally obtain a much better agreement, at least in the frequency range corresponding to a quarter wavelength comparable with the depth of the available subsoil data. Some unresolved questions still remain, such as the low frequency behaviour ( \(<\) 1 Hz) that could be due either to complex propagation at depth larger than the one presently investigated or to near source effects, and the behaviour of vertical spectra whose recorded/code difference is too large to be explained with the information currently available.  相似文献   

7.
This paper describes a new method for the evaluation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ of uncoupled torsional to lateral frequencies in real multi-storey buildings. The above-mentioned parameters greatly affect the lateral-to-torsional coupling of the response of asymmetric systems and thus are of paramount importance in the assessment of the in-plan irregularity of buildings. The proposed method, which is a generalization of that suggested by Calderoni et al. (Earthq Spectra 18(2):219–231, 2002), allows the calculation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ from the structural response to arbitrary distributions of forces and torsional couples. The effectiveness of the method is validated on some regularly and non-regularly asymmetric buildings characterised by different in-plan irregularity. The analyses demonstrate that the results of the method are rigorous in the case of regularly asymmetric systems and only slightly depend upon the heightwise distribution of the forces in the case of non-regularly asymmetric systems. Finally, the values of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ resulting from the proposed method are compared to those obtained by means of the procedure suggested by Makarios and Anastassiadis in (Struct Des Tall Spec Build 7(1):33–55, 1998a; Struct Des Tall Spec Build 7(1):57–71, 1998b) .  相似文献   

8.
The Lorca Basin has been the object of recent research aimed at studying the phenomena of earthquake-induced landslides and its assessment in the frame of different seismic scenarios. However, it has not been until the 11th May 2011 Lorca earthquakes when it has been possible to conduct a systematic approach to the problem. In this paper we present an inventory of slope instabilities triggered by the Lorca earthquakes which comprises more than 100 cases, mainly rock and soil falls of small size (1–100  \(\hbox {m}^{3}\) ). The distribution of these instabilities is here compared to two different earthquake-triggered landslide hazard maps: one considering the occurrence of the most probable earthquake for a 475-years return period in the Lorca Basin \((\hbox {M}_{\mathrm{w}}=5.0)\) based on both low- and high-resolution digital elevation model (DEM); and a second one matching the occurrence of the \(\hbox {M}_{\mathrm{w}}=5.2\) 2011 Lorca earthquake, which was performed using the higher resolution DEM. The most frequent Newmark displacements related to the slope failures triggered by the 2011 Lorca earthquakes are lower than 2 cm in both the hazard scenarios considered. Additionally, the predicted Newmark displacements were correlated to the inventory of slope instabilities to develop a probability of failure equation. The fit seems to be very good since most of the mapped slope failures are located on the higher probability areas. The probability of slope failure in the Lorca Basin for a seismic event similar to the \(\hbox {M}_{\mathrm{w}}\) 5.2 2011 Lorca earthquake can be considered as very low (0–4 %).  相似文献   

9.
Towards fully data driven ground-motion prediction models for Europe   总被引:2,自引:2,他引:0  
We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and recordings corresponding to stations with measured $V_{s30}$ properties have been selected. Five input parameters were selected: the moment magnitude $M_{W}$ , the Joyner–Boore distance $R_{JB}$ , the focal mechanism, the hypocentral depth, and the site proxy $V_{S30}$ . A feed-forward ANN type is used, with one 5-neuron hidden layer, and an output layer grouping all the considered ground motion parameters, i.e., peak ground acceleration (PGA), peak ground velocity (PGV) and 5 %-damped pseudo-spectral acceleration (PSA) at 62 periods from 0.01 to 4 s. A procedure similar to the random-effects approach was developed to provide between and within event standard deviations. The total standard deviation ( $\sigma $ ) varies between 0.298 and 0.378 (log $_{10}$ unit) depending on the period, with between-event and within-event variabilities in the range 0.149–0.190 and 0.258–0.327, respectively. Those values prove comparable to those of conventional GMPEs. Despite the absence of any a priori assumption on the functional dependence, our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude, amplification on soft soils and even indications for nonlinear effects in softer soils.  相似文献   

10.
In the last two decades, south-central Europe and the Eastern Alps have been widely explored by many seismic refraction experiments (e.g., CELEBRATION 2000, ALP 2002, SUDETES 2003). Although quite detailed images are available along linear profiles, a comprehensive, three-dimensional crustal model of the region is still missing. This limitation makes this region a weak spot in continental-wide comprehensive representations of crustal structure. To improve on this situation, we select and collect 37 published active-source seismic lines in this region. After geo-referencing each line, we sample them along vertical profiles—every 50?km or less along the line—and derive P-wave velocities in a stack of homogeneous layers (separated by discontinuities: depth of crystalline basement, top of lower crust, and Moho). We finally merge the information using geostatistical methods, and infer S-wave velocity and density using empirical scaling relations. We present here the resulting crustal model for a region encompassing the Eastern Alps, Dinarides, Pannonian basin, Western Carpathians and Bohemian Massif, covering the region within $45^{\circ}\text{--}51^{\circ}\hbox{N}$ and $11^{\circ} \text{--} 22^{\circ}\hbox{E}$ with a resolution of $0.2^{\circ} \times 0.2^{\circ}.$ We are also able to extend and update the map of Moho depth in a wider region within $35^{\circ}\text{--}51^{\circ}\hbox{N}$ and $12^{\circ}\text{--}45^{\circ}\hbox{E},$ gathering Moho values from the collected seismic lines, other published dataset and using the European plate reference EPcrust as a background. All the digitized profiles and the resulting model are available online.  相似文献   

11.
This article presents the latest generation of ground-motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases. The models present a number of novelties with respect to previous generations of models (Ambraseys et al. in Earthq Eng Struct Dyn 25:371–400, 1996, Bull Earthq Eng 3:1–53, 2005; Bommer et al. in Bull Earthq Eng 1:171–203, 2003; Akkar and Bommer in Seismol Res Lett 81:195–206, 2010), namely: inclusion of a nonlinear site amplification function that is a function of $\text{ V }_\mathrm{S30}$ and reference peak ground acceleration on rock; extension of the magnitude range of applicability of the model down to $\text{ M }_\mathrm{w}$ 4; extension of the distance range of applicability out to 200 km; extension to shorter and longer periods (down to 0.01 s and up to 4 s); and consistent models for both point-source (epicentral, $\text{ R }_\mathrm{epi}$ , and hypocentral distance, $\text{ R }_\mathrm{hyp}$ ) and finite-fault (distance to the surface projection of the rupture, $\text{ R }_\mathrm{JB}$ ) distance metrics. In addition, data from more than 1.5 times as many earthquakes, compared to previous pan-European models, have been used, leading to regressions based on approximately twice as many records in total. The metadata of these records have been carefully compiled and reappraised in recent European projects. These improvements lead to more robust ground-motion prediction equations than have previously been published for shallow (focal depths less than 30 km) crustal earthquakes in Europe and the Middle East. We conclude with suggestions for the application of the equations to seismic hazard assessments in Europe and the Middle East within a logic-tree framework to capture epistemic uncertainty.  相似文献   

12.
13.
The full moment tensor is a mathematical expression of six independent variables; however, on a routine basis, it is a common practice to reduce them to five assuming that the isotropic component is zero. This constraint is valid in most tectonic regimes where slip occurs entirely at the fault surface (e.g. subduction zones); however, we found that full moment tensors are best represented in transform fault systems. Here we present a method to analyze source complexity of earthquakes of different sizes using a simple formulation that relates the elastic constants obtained from independent studies with the angle between the slip and the fault normal vector, referred to as angle \( \theta \) ; this angle is obtained from the full moment tensors. The angle \( \theta \) , the proportion of volume change \( \left( k \right) \) and the constant volume (shear) component \( \left( T \right) \) are numerical indicators of complexity of the source; earthquakes are more complex as \( \theta \) deviates from \( \pi /2 \) or as T and k deviate from zero as well. These parameters are obtained from the eigensolution of the full moment tensor. We analyzed earthquakes in the Gulf of California that exhibit a clear isotropic component and we observed that the constant volume parameter T is independent of scalar moments, suggesting that big and small earthquakes are equally complex. In addition, simple models of one single fault are not sufficient to describe physically all the combinations of \( \theta \) in a source type plot. We also found that the principal direction of the strike of the Transform Fault System in the Gulf of California is following the first order approximation of the normal surface of the full moment tensor solution, whereas for deviatoric moment tensors the principal direction does not coincide with the strike of the Transform Fault System. Our observations that small and large earthquakes are equally complex are in agreement with recent studies of strike-slip earthquakes.  相似文献   

14.
In this paper we describe a stable automatic method to estimate in real time the seismic moment, moment magnitude and corner frequency of events recorded by a network comprising broad-band and accelerometer sensors. The procedure produces reliable results even for small-magnitude events $\hbox {M}_{\mathrm{W}}\approx 3$ . The real-time data arise from both the Transfrontier network at the Alps-Dinarides junction and from the Italian National Accelerometric Network (RAN). The data is pre-processed and the S-wave train identified through the application of an automatic method, which estimates the arrival times based on the hypocenter location, recording site and regional velocity model. The transverse component of motion is used to minimize conversion effects. The source spectrum is obtained by correcting the signals for geometrical spreading and intrinsic attenuation. Source spectra for both velocity and displacement are computed and, following Andrews (1986), the seismic moment and the first estimate of the corner frequency, $f_{0}$ , derived. The procedure is validated using the recordings of some recent moderate earthquakes (Carnia 2002; Bovec 2004; Parma 2008; Aquila 2009; Macerata 2009; Emilia 2012) and the recordings of some minor events in the SE Alps area for which independent seismic moment and moment magnitude estimates are available. The results obtained with a dataset of 843 events recorded by the Transfrontier and RAN networks show that the procedure is reliable and robust for events with $\hbox {M}_{\mathrm{W}}\ge 3$ . The estimates of $f_{0}$ are less reliable. The results show a scatter, principally for small events with $\hbox {M}_{\mathrm{W}}\le 3$ , probably due to site effects and inaccurate locations.  相似文献   

15.
Complexity–entropy causality plane (CECP) is a diagnostic diagram plotting normalized Shannon entropy \({\cal H}_S\) versus Jensen–Shannon complexity \({\cal C}_{JS}\) that has been introduced in nonlinear dynamics analysis to classify signals according to their degrees of randomness and complexity. In this study, we explore the applicability of CECP in hydrological studies by analyzing 80 daily stream flow time series recorded in the continental United States during a period of 75 years, surrogate sequences simulated by autoregressive models (with independent or long-range memory innovations), Theiler amplitude adjusted Fourier transform and Theiler phase randomization, and a set of signals drawn from nonlinear dynamic systems. The effect of seasonality, and the relationships between the CECP quantifiers and several physical and statistical properties of the observed time series are also studied. The results point out that: (1) the CECP can discriminate chaotic and stochastic signals in presence of moderate observational noise; (2) the signal classification depends on the sampling frequency and aggregation time scales; (3) both chaotic and stochastic systems can be compatible with the daily stream flow dynamics, when the focus is on the information content, thus setting these results in the context of the debate on observational equivalence; (4) the empirical relationships between \({\mathcal H}_S\) and \({\mathcal C}_{JS}\) and Hurst parameter H, base flow index, basin drainage area and stream flow quantiles highlight that the CECP quantifiers can be considered as proxies of the long-term low-frequency groundwater processes rather than proxies of the short-term high-frequency surface processes; (6) the joint application of linear and nonlinear diagnostics allows for a more comprehensive characterization of the stream flow time series.  相似文献   

16.
A global dataset of more than 3,000 ground motion records from 536 sites from Greece, Italy, Turkey, USA and Japan is compiled and used to propose code-oriented elastic acceleration response spectra and soil amplification factors for a new site classification system, which, besides the classical geotechnical parameters $N_{SPT}, S_{u}$ and PI, uses also the fundamental period of the site, the thickness of soil deposits and the average shear wave velocity to the seismic bedrock, instead of $V_{s,30}$ . We propose a new classification system with the associated amplification factors and normalized response spectra for two seismicity levels, i.e. $M_{s}\le 5.5$ and $M_{s}>5.5$ . Uncertainties in the estimation of soil amplification factors are captured using a logic-tree approach, which allows the efficient use of alternative models and methods. The aim of this work is to improve the present EC8 soil classification. The effectiveness of the proposed classification system is compared to that of EC8 classification system using an error term, which represents the average dispersion of data within all categories of a given classification scheme. Error terms for the new classification system are lower than the error terms for EC8 classification system at all periods.  相似文献   

17.
The TKE dissipation rate in the northern South China Sea   总被引:1,自引:0,他引:1  
The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline 〈ε p〉 of the deep basin and on the shelf. Linear correlation between 〈ε p〉 and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of 〈ε p〉. On the shelf stations, the bottom boundary layer depth-integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ reaches 17–19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{p}} $ was mostly ~10–30 % of $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ . A weak dependence of bin-averaged dissipation $ \overline{\varepsilon} $ on the Richardson number was noted, according to $ \overline{\varepsilon}={\varepsilon}_0+\frac{\varepsilon_{\mathrm{m}}}{{\left(1+ Ri/R{i}_{\mathrm{cr}}\right)}^{1/2}} $ , where ε 0 + ε m is the background value of $ \overline{\varepsilon} $ for weak stratification and Ri cr?=?0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon–Gregg scaling for internal-wave-induced turbulence dissipation.  相似文献   

18.
At present, the seismic vulnerability assessment of reinforced concrete (RC) buildings is made considering fixed base conditions; moreover, the mechanical properties of the building remain intact in time. In this study we investigate whether these two fundamental hypotheses are sound as aging and soil-structure interaction (SSI) effects might play a crucial role in the seismic fragility analysis of RC structures. Among the various aging processes, we consider the chloride-induced corrosion based on probabilistic modeling of corrosion initiation time and corrosion rate. Different corrosion aspects are considered in the analysis including the loss of reinforcement cross-sectional area, the degradation of concrete cover and the reduction of steel ultimate deformation. SSI is modeled by applying the direct one-step approach, which accounts simultaneously for inertial and kinematic interactions. Two-dimensional incremental dynamic analysis is performed to assess the seismic performance of the initial uncorroded ( \(\hbox {t}=0\) years) and corroded ( \(\hbox {t}=50\) years) RC moment resisting frame structures, having been designed with different seismic code levels. The time-dependent fragility functions are derived in terms of the spectral acceleration at the fundamental mode of the structure \(\hbox {S}_{\mathrm{a}}(\hbox {T}_{1}\) , 5 %) and the outcropping peak ground acceleration for the immediate occupancy and collapse prevention limit states. Results show an overall increase in seismic vulnerability over time due to corrosion highlighting the important influence of deterioration due to aging effects on the structural behavior. Moreover, the consideration of SSI and site effects may significantly alter the expected structural performance leading to higher vulnerability values.  相似文献   

19.
A simple biogeochemical model coupled to an offline ocean tracer transport model driven by reanalysis ocean data is used to simulate the seasonal and interannual CO $_2$ flux variability in the northern Indian Ocean. The maximum of seasonal and interannual CO $_2$ emission variances in the northern Indian Ocean are located in the coastal Arabian Sea (AS) and Southern Peninsular India (SP) with a basin-wide seasonal amplitude and standard deviation of 0.044 $\pm $ 0.04 Pg C year $^{-1}$ . The area integrated CO $_2$ emissions from these two regions in the model are significantly correlated (above a 95 % level) with the observations of Takahashi et al. (Deep-Sea Res-II, 56:554–577, 2009). The interannual anomalies of CO $_2$ emission from the AS and SP are found as 40 and 30 % of their respective seasonal amplitudes. Both the Arabian Sea (AS) and Southern Peninsular India (SP) interannual CO $_2$ emission anomalies show a 3–4-year variability. The correlations of AS and SP CO $_2$ emission anomalies with the Indian Ocean Dipole/Zonal Mode (IODZM) and Southern Oscillation (SO) indices from 1980 to 1999 are 0.35, 0.21 and 0.32, 0.01 respectively. A 5-year window moving correlation analysis shows that the relationship of AS and SP CO $_2$ emission to the SO and IODZM are complementary to each other. During the years when the correlation of air–sea CO $_2$ emission with the IODZM is stronger, the corresponding correlation with the SO is weaker or opposite. The total change in pCO $_2$ is broken down into changes induced by the individual components such as dissolved inorganic carbon (DIC), sea surface temperature (SST), alkalinity, and salinity and found that (1) the effect of SST in the AS CO $_2$ emission increases (decreases) when the correlation of CO $_2$ emission with the IODZM is positive (negative), and (2) the SP CO $_2$ emission is strongly controlled by the circulation-driven DIC changes; however, this relation is found to be weaker when the SO correlates negatively with the SP CO $_2$ emission.  相似文献   

20.
Many researches have been conducted on the health influence of Particle Matter with diameters less than 2.5 microns (PM \(_{2.5}\) ). There are also some researches on the cause of PM \(_{2.5}\) . However, such research generally focuses on the economic and political aspect of the environment issue. In this paper, a data-analysis approach of the PM \(_{2.5}\) issue is raised to offer a new viewpoint of this problem. The applied method extracts the relations of air quality system record as a relation map, which illustrates the influence among the parameters in a graph. The method successfully fitted the weather record, and derived from it the influencers of PM \(_{2.5}\) . The result shows that the average temperature, average barometric pressure and concentration of Ozone are all factors that have an influence on the concentration of PM \(_{2.5}.\) A short justification of it is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号