首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hudson is one of the most active volcanoes in the Southern Andes—it had one of the largest eruptions of the 20th century in 1991 (VEI?=?5) and smaller eruptions in 1971 (VEI?=?3), maybe 1973, and 2011 (VEI of 1-2). We use satellite-based interferometric synthetic aperture radar (InSAR) and thermal imagery to characterize the activity of Hudson between 2004 and 2011 and during the 2011 eruption. InSAR data show that the volcano inflated between 2004 and 2010 with a maximum change rate of between 2 and 3 cm/yr—about half of the deformation rate observed during a previous deformation episode from 1993–1999. Inversion for an inflating point source suggests magma accumulation beneath the SW part of the caldera at an average depth of 10 km. This inferred source is deeper than both the sources estimated for the magma chamber of the 1991 eruption (from petrology) and for the 1993–1999 deformation event. Also, the deformation from 2004–2010 is centered at a slightly different location and has a smaller volume change than that between 1993–1999—further indicating that there is either a large magma reservoir or several separate ones. While the deformation center is a few km from the eruption location near the caldera rim, the two are possibly linked since the predicted static Coloumb stress changes due to the inferred inflation source would encourage unclamping on potential faults in the caldera rim. We also analize nighttime satellite thermal images from MODIS and ASTER. While MODIS did not show any unambiguous evidence for hot spots, ASTER thermal imagery show that at least four months before the eruption there were locations with temperatures 7–8ºK above background. Lahars observed by helicopter overflights on 4 March 2011 and October 2011 suggest that the hotspots may have been caused by lakes or subglacial melting. There is no InSAR data available for the months immediately preceding the eruption, but the ASTER thermal imagery results may indicate an increase in geothermal activity that could have been used to forecast the eruption.  相似文献   

2.
联合1998~2004年的五期水准测量资料以及2002~2004年的GPS观测成果,分析了腾冲火山区岩浆的活动特征。垂直形变资料显示,火山区南部发生较明显下降,这可能是由岩浆和水的流失及放气等原因引起;水平形变资料显示,以固东—腾冲断裂(F2)的西支为界,断层两盘分别向东、西两个方向运动,断层活动表现出明显的拉张特征;综合分析表明,岩浆可能沿断层从南部向北部运移,并在断层内重新聚集形成岩墙;垂直形变的多个极值区以及水平位移的不规则性表明,火山区岩浆体不很规则或有多个岩浆囊体存在;从形变量大小分析,岩浆的活动量远小于中等程度火山喷发的质量,表明火山近期喷发的危险性较小。  相似文献   

3.
A seismic survey was carried out at Stromboli volcano during August 1973. Statistical and spectral analyses of volcanic tremor and explosion quakes were performed. The statistical analysis has shown that the value of them coefficient in Ishimoto & Iida’s relation is high and that the hourly frequencies of events are fairly constant. The spectral analysis has shown a similarity in shape between tremors and explosion quakes. These events have the dominant frequency of 5 Hz at the craters area.  相似文献   

4.
Two magnetotelluric (MT) surveys were carried out on the Mt. Etna volcano after two of the most intense eruptions of the last 30 years which took place in summer 2001 and winter 2002–2003. Surveying was pursued for two main reasons. First, we sought to contribute to the definition of the first-order structure and physico-chemical state (temperature, fluids, melts) of a volcano that has been extensively explored and monitored by means of various geophysical methods, but where only few electrical and electromagnetic surveys have been performed. Secondly, we acquired MT data in the same sites in the two different surveys with the aim of monitoring the possible changes of the first-order structure, since conditions are expected to vary on an active volcano such as Etna, and are supposed to be linked to the eruptive events. Soundings have been acquired in an E-W 10 km-long profile across the southern flank of Mt. Etna, at a distance of almost 6 km south from the Central Crater. The first survey was carried out three months after the 2001 eruption. Inverse models define a pronounced (4 km thickness) low resistivity section at a depth of about 1 km b.s.l. to the west. To the east, a low resistivity section is still present, but appears deeper, thinner and more resistive, and a shallow low resistivity anomaly also exists. The shallow anomaly to the east is tentatively correlated with altered and clayey volcanic units and/or temporary groundwater storage. The deep anomalies are interpreted as being due to melt storage at shallow depths which was not exhausted during the eruption. This would be confirmed by the abundance of lava erupted within one year from the end of the survey. The few good sites retrieved in the second survey, carried out a few weeks after the eruption of 2002–2003, confirm the picture defined in the first survey, and provide a better definition of the bottom of the deep anomaly located in the sedimentary basement.  相似文献   

5.
The Yurihara oil and gas field is located on the southern edge of Akita Prefecture, northeastern Japan. In this area, drilling, surface geological surveys and many seismic surveys have been used to investigate the geological structure. Wells drilled into the Nishikurosawa Basalt Group (NBG) of Miocene age found oil and gas reservoirs at depths of 1.5–2 km. Oil and gas are now being produced commercially and further exploration is required in the surrounding areas. However, since the neighbouring areas are covered with young volcanic products from the Chokai volcano, and have a rough topography, the subsurface distribution of the NBG must be investigated using other methods in addition to seismic reflection. According to the well data, the resistivity of the NBG is comparatively higher than that of the overlying sedimentary formations, and therefore the magnetotelluric (MT) method is expected to be useful for the estimation of the distribution of the NBG. An MT survey was conducted along three survey lines in this area. Each line trended east–west, perpendicular to the regional geological strike, and was composed of about 25 measurement sites. Induction vectors evaluated from the magnetic field show that this area has a two-dimensional structure. The evaluated resistivity sections are in agreement with the log data. In conclusion, we were able to detect resistive layers (the NBG) below conductive layers. The results indicate that the NBG becomes gradually less resistive from north to south. In the centre of the northern line, an uplifted resistive area is interpreted as corresponding to the reservoir. By comparison with a seismic section, we prove the effectiveness of the integration of seismic and MT surveys for the investigation of the morphology and internal structure of the NBG. On other survey lines, the resistive uplifted zones are interpreted as possible prospective areas.  相似文献   

6.
Uplift of a broad area centered ~6 km west of the summit of South Sister volcano started in September 1997 (onset estimated from model discussed in this paper) and was continuing when surveyed in August 2006. Surface displacements were measured whenever possible since August 1992 with satellite radar interferometry (InSAR), annually since August 2001 with GPS and leveling surveys, and with continuous GPS since May 2001. The average maximum displacement rate from InSAR decreased from 3–5 cm/yr during 1998–2001 to ~1.4 cm/yr during 2004–2006. The other datasets show a similar pattern, i.e., surface uplift and extension rates decreased over time but deformation continued through August 2006. Our best-fit model to the deformation data is a vertical, prolate, spheroidal point-pressure source located 4.9–5.4 km below the surface. The source inflation rate decreased exponentially during 2001–2006 with a 1/e decay time of 5.3 ± 1.1 years. The net increase in source volume from September 1997 to August 2006 was 36.5–41.9 x 106 m3. A swarm of ~300 small (M max = 1.9) earthquakes occurred beneath the deforming area in March 2004; no other unusual seismicity has been noted. Similar deformation episodes in the past probably would have gone unnoticed if, as we suspect, most are small intrusions that do not culminate in eruptions.  相似文献   

7.
Marine debris, particularly debris that is composed of lost or abandoned fishing gear, is recognized as a serious threat to marine life, vessels, and coral reefs. The goal of the GhostNet project is the detection of derelict nets at sea through the use of weather and ocean models, drifting buoys and satellite imagery to locate convergent areas where nets are likely to collect, followed by airborne surveys with trained observers and remote sensing instruments to spot individual derelict nets. These components of GhostNet were first tested together in the field during a 14-day marine debris survey of the Gulf of Alaska in July and August 2003. Model, buoy, and satellite data were used in flight planning. A manned aircraft survey with visible and IR cameras and a LIDAR instrument located debris in the targeted locations, including 102 individual pieces of debris of anthropogenic or terrestrial origin.  相似文献   

8.
1975年海城地震与1976年唐山地震前后的重力变化   总被引:20,自引:3,他引:20       下载免费PDF全文
1975年2月4日海城7.3级地震前后在震中以西不远的一条长约250公里的北西—南东向剖面上进行了五次重力测量,震前三次,震后两次.剖面上相邻两个测点的重力差的测量均方误差小于40微伽.自1972年6月至1973年5月的一年期间的三次观测结果表明,剖面东南段重力值显著下降,最大达352微伽.地震以后,1975年3月的第四次重力测量发现,剖面东南段的重力值回升到第一次测量时的水平.1975年7月的第五次测量则表明剖面东南段的重力值继续上升.1976年7月28日唐山7.8级地震前后也观测到重力的变化,不过地震前重力是增加而不是减少.震前和震后,在震中以北不远的一条长约270公里的东西向剖面上各进行过两次重力测量.结果表明,主震后整个剖面,特别是靠近唐山的那些测点的重力也有逐渐恢复到震前第一次测量时的数值的趋势.由这些结果可以看到,重力的变化与地震的发生似有密切的关系.根据重复大地水准测量资料估计的地面高程变化所能引起的重力变化远比所观测到的变化为小.因此,我们推测某些大地震可能与地壳和上地幔内的质量迁移有关,认为所观测到的重力变化大部份是质量迁移引起的.我们对质量迁移的重力效应作了理论分析,但是,对迁移的物理过程我们还很不清楚.   相似文献   

9.
An explosive eruption occurred at the summit of Bezymianny volcano (Kamchatka Peninsula, Russia) on 11 January 2005 which was initially detected from seismic observations by the Kamchatka Volcanic Eruption Response Team (KVERT). This prompted the acquisition of 17 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images of the volcano over the following 10 months. Visible and infrared data from ASTER revealed significant changes to the morphology of the summit lava dome, later seen with field based thermal infrared (TIR) camera surveys in August 2005. The morphology of the summit lava dome was observed to have changed from previous year’s observations and historical accounts. In August 2005 the dome contained a new crater and two small lava lobes. Stepped scarps within the new summit crater suggest a partial collapse mechanism of formation, rather than a purely explosive origin. Hot pyroclastic deposits were also observed to have pooled in the moat between the current lava dome and the 1956 crater wall. The visual and thermal data revealed a complex eruption sequence of explosion(s), viscous lava extrusion, and finally the formation of the collapse crater. Based on this sequence, the conduit could have become blocked/pressurized, which could signify the start of a new behavioural phase for the volcano and lead to the potential of larger eruptions in the future.  相似文献   

10.
Before and after the Haicheng earthquake of magnitude 7.3 which occurred on February 4, 1975, five repeated gravimeter surveys were carried out, three before and two after the earthquake, along a northwest-southeast profile of about 250 km in length not far on the west of the epicenter. The mean-square error of the measurements of the gravity differences between two consecutive points on the profile is less than 40 μGal. From June, 1972 to May, 1973, within a period of about one year, the results of three surveys indicated a clear decrease of the gravity values at points on the southeastern portion of the profile, amounting to about 352 μGal. After the earthquake, the fourth survey, which was carried out in March, 1975, revealed that the gravity values had recovered to the levels of the first survey and continued to increase as was shown by a fifth survey carried out in July of the same year.Variations of gravity were also observed before and after the Tangshan earthquake of magnitude 7.8 which occurred on July 28, 1976, but in this case, gravity was increasing instead of decreasing before the earthquake. Along an east-west profile of about 270 km in length and not far on the north of the epicenter, two gravity surveys were made before and two after the earthquake. The results showed that after the main shock, the gravity values of the whole profile, especially at those points closer to Tangshan, tended to return gradually to their values of the first survey before the earthquake.From these results, there seems to be a close relationship between these gravity variations and the occurrences of earthquakes. Based on results of repeated levelling work done in these regions, the estimated amount of gravity change caused by the change of elevation of the ground surface is far too small to account for the observed value. Therefore we speculate that some large earthquakes might be associated with some sort of mass transfer under ground, within the crust or in the upper mantle. This transfer would cause a large part of the gravity variation observed. We have made a theoretical analysis of this effect and attempted to obtain some estimate of the magnitude of this mass transfer, even though we are not yet clear about the physics of it.  相似文献   

11.
On 22 September 2002, 1 month before the beginning of the flank eruption on the NE Rift, an M-3.7 earthquake struck the northeastern part of Mt. Etna, on the westernmost part of the Pernicana fault. In order to investigate the ground deformation pattern associated with this event, a multi-disciplinary approach is presented here. Just after the earthquake, specific GPS surveys were carried out on two small sub-networks, aimed at monitoring the eastern part of the Pernicana fault, and some baselines belonging to the northeastern EDM monitoring network of Mt. Etna were measured. The leveling route on the northeastern flank of the volcano was also surveyed. Furthermore, an investigation using SAR interferometry was performed and also the continuous tilt data recorded at a high precision sensor close to the epicenter were analyzed to constrain the coseismic deformation. The results of the geodetic surveys show a ground deformation pattern that affects the entire northeastern flank of the volcano, clearly shaped by the Pernicana fault, but too strong and wide to be related only to an M-3.7 earthquake. Leveling and DInSAR data highlight a local strong subsidence, up to 7 cm, close to the Pernicana fault. Significant displacements, up to 2 cm, were also detected on the upper part of the NE Rift and in the summit craters area, while the displacements decrease at lower altitude, suggesting that the dislocation did not continue further eastward. Three-dimensional GPS data inversions have been attempted in order to model the ground deformation source and its relationship with the volcano plumbing system. The model has also been constrained by vertical displacements measured by the leveling survey and by the deformation map obtained by SAR interferometry.  相似文献   

12.
We present reults from simultaneous precise levelling and gravity surveys on Mount Etna covering the period August 1980–August 1981. The flank eruption of March 1981 erupted 18–35 × 105m3 of lava. Following it, upward movements of more than 17 cm were observed close to the new fissure and a broad, apparently independent, uplift of 5 cm was observed 4 km to the west. A zone of about 2 cm depression to the east of the fissure is insufficient to account for the volume of magma erupted. Gravity results show positive changes of up to 63 microgal, and display good positive correlation with elevation changes. Both sets of measurements appear to be due to new intrusion of magma rather than subsurface magma drainage. Ground deformation close to the new fissure is well modelled by intrusion of a dyke in the zone 100–500 m below the surface, striking along the fissure and of dip between 75–90°. The gravity changes are modelled as due to a deeper intrusion of magma, along the same line but some 1500 m below the surface. The changes were not present immediately after the eruption but occurred during the ensuing 5 months. It is proposed that this introduction of matter occurred by crack propagation along the fissure in the aftermath of the eruption. Towards the west of the fissure, and some 4 km west of the summit, ground deformation is modelled by intrusion of a dyke in the zone 300–1500 m below the surface and dipping at 80–85°. Again, gravity changes appear to be due to magma intrusion at greater depth, close to sea level. In this case gravity changes are interpreted as due to magma density changes, as a result of pressure increase in a larger scale fissure zone. This same pressure increase may be forcing the new intrusion close to the surface, and makes this part of the volcano a region of especially high risk.  相似文献   

13.
Since the 8th century, more than seventeen eruptions have been recorded for the Mt. Fuji volcano, with the most recent eruption occurring in 1707 (Hoei eruption). For the past 300 years the volcano has been in a quiescent stage and, since the early 1960s, has exhibited neither fumarolic nor thermal activity. However, the number of low-frequency earthquakes with a hypocentral depth of 10–20 km increased significantly beneath the northeastern flank of Mt. Fuji in 2000–2001, suggesting a possible resumption of magmatic activity. In this study, diffuse CO2 efflux and thermal surveys were carried out in four areas of the volcano in 2001–2002 in order to detect possible signs of the upward movement of deep magma. At all survey points, the CO2 efflux was below the detection limit with the exception of a few points with biological CO2 emission, and ground temperatures at a depth of 20–30 cm were below ambient, indicating no surface manifestations of gas or heat emission. Should magma rise into the subsurface, the diffuse CO2 efflux would be expected to increase, particularly along the tectonically weakened lineation on the Mt. Fuji volcano, allowing for the early detection of pre-eruptive degassing.  相似文献   

14.
The MODVOLC satellite monitoring system has revealed the first recorded eruption of Mount Belinda volcano, on Montagu Island in the remote South Sandwich Islands. Here we present some initial qualitative observations gleaned from a collection of satellite imagery covering the eruption, including MODIS, Landsat 7 ETM+, ASTER, and RADARSAT-1 data. MODVOLC thermal alerts indicate that the eruption started sometime between 12 September and 20 October 2001, with low-intensity subaerial explosive activity from the islands summit peak, Mount Belinda. By January 2002 a small lava flow had been emplaced near the summit, and activity subsequently increased to some of the highest observed levels in August 2002. Observations from passing ships in February and March 2003 provided the first visual confirmation of the eruption. ASTER images obtained in August 2003 show that the eruption at Mount Belinda entered a new phase around this time, with fresh lava effusion into the surrounding icefield. MODIS radiance trends also suggest that the overall activity level increased significantly after July 2003. Thermal anomalies continued to be observed in MODIS imagery in early 2004, indicating a prolonged low-intensity eruption and the likely establishment of a persistent summit lava lake, similar to that observed on neighboring Saunders Island in 2001. Our new observations also indicate that lava lake activity continues on Saunders Island.Editorial responsibility: J. Gilbert  相似文献   

15.
There have been no substantial changes in the thermal patterns at the summit of Mount Rainier in the period September 1964–September 1966, within the detection limits of the infrared instrumentation. Some differences in radiance are attributed to differences in snow cover. The highest apparent temperature is at a snow-free area on the west flank of the summit cone, several hundred feet below the west crater rim. An anomaly at this site was recorded on both infrared surveys, but no prior reports of thermal activity here have been made by ground parties. Other anomalous thermal zones at the summit are on the northern quadrants of both crater rims. A very small, low-temperature fumarole reported on Mount Adams was not detected, nor were any other thermal manifestations recorded. One anomaly consisting of a close-spaced cluster of thermal spots was detected at The Boot on Mount St. Helens and corresponds to a known fumarole area. The only thermal feature seen on Mount Shasta is near the summit at a thermal spring that has been observed by many climbers. Two anomalies were found on the north flank of Lassen Peak. Thermal activity had not been previously reported at either site, though one is in a known solfatarized area. No ground investigation has been made at the other location. Much of the other thermal activity in the Lassen Peak area is in the northeast quadrant of Brokeoff Caldera. Most of these features are well documented in the literature; others not previously described are in fairly accessible areas and doubtless result from springs and fumaroles related to Brokeoff Caldera.  相似文献   

16.
The occurrence of two ‘rare’ floods (August 1973, August 1977) in the Plynlimon experimental catchments has confirmed the susceptibility of small upland catchments to summer flooding and provided clues to complications in the geomorphological interpretation of floods in terms of their magnitude and frequency. Magnitude may be treated both in terms of work and effectiveness; the emphasis here is on effectiveness, as revealed by simple surveys. The first Plynlimon flood was more effective on slopes and the second in channels, despite peak discharges of similar return periods and almost identical rates of work revealed by bedload trapping. Effectiveness/frequency studies are likely to require a much more detailed approach, subdividing both the characteristics of the flood and the spatial elements of the affected catchments; a simple slope/channel subdivision is found to be suitable for accounts of effectiveness found in the literature on British floods this century. Effectiveness studies also require regular surveys throughout the recovery period following major flooding; in upland catchments these surveys should concentrate on identifying threshold phenomena and illustrating the relationship between effectiveness and work assessments of magnitude.  相似文献   

17.
Microgravity measurements and levelling surveys on volcanoes are not always easy to make, but are useful for studying volcanic processes quantitatively. Gravity changes associated with volcanic activity are not always significant. Precision of microgravity measurements depend critically on the procedures adopted, and those applied in the present paper are described. Levelling technique is now orthodox, and some empirical laws relating ground deformation to volcanic activity are deduced from the accumulated data. Gravity changes occur at the same time and places as ground deformations. The relationship between microgravity and height changes are discussed from the standpoint of analyzing the data obtained on volcanoes. The observational results obtained on four volcanoes in Japan are separately analyzed because each volcano exhibits different patterns of gravity changes and deformations. During the 1977–1982 activity of Usu volcano, deformation was accompanied by microgravity changes frequently observed at a particular benchmark at the base of the volcano for about five years. The gravity changes prove to be not a direct effect of magma movements but to be caused by the deformations of ground strata and aquifers around the benchmark. The 1983 eruption of Miyakejima volcano was associated with local gravity changes around the eruptive fissures due to magma intrusion which was approximately modelled. Similarly the 1986 eruption of Ooshima volcano caused gravity changes on the volcano, but these were poorly correlated with elevation changes and their origins were not uniquely interpreted. To detect gravity changes associated with the activity of Sakurajima volcano, an equigravity point was selected at the north of the volcano besides the gravity points on and around the volcano itself. The probable gradual accumulation of magmas beneath the volcano for eight years is substantiated by observed microgravity and elevation changes.  相似文献   

18.
Second‐generation performance‐based earthquake engineering (PBEE‐2) requires a library of component fragility functions to estimate probabilistic damage to a wide variety of building components. The present work draws on a large body of (mostly) post‐earthquake reconnaissance and (some) post‐earthquake survey observations of traction elevators to create fragility functions useful in PBEE‐2. Two surveys provide detailed observations of 115 representative elevators at 12 hospitals shaken in the 1989 Loma Prieta and 1994 Northridge earthquakes and selected without regard to or foreknowledge of damage. Of these, 55 failed and 60 did not. Approximately half were installed after an important code change of 1972, so one can distinguish the performance of pre‐1973 and post‐1973 elevator construction. They experienced a range of strong motion: 22 with peak ground acceleration (PGA) < 0.25 g, 93 with 0.25 g < PGA < 0.85 g. The hospitals had elevator failure rates as low as 0% and as high as 100%. A third survey describes damage qualitatively for six sites with PGA ≤ 0.25 and per‐site failure rates of 0% to perhaps 30%. Fragility functions are offered where the damage state is the loss of functionality of the elevator. The elevators in these surveys exhibit a median capacity of PGA ≈ 0.35 g with a logarithmic standard deviation of 0.40. Capacity is modestly sensitive to whether the elevator was installed before or after 1973. Using building‐specific intensity measures such as Sa(T1) does not improve the fragility functions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Since 1572, 33 phreatic to phreatomagmatic eruptions have occurred on Taal volcano (Philippines), some of them causing several hundred casualties. Considering the time delay between two consecutive eruptions, there is an 88% probability that Taal volcano should have already erupted. Since 1992, several phases of seismic activity have been recorded accompanied by ground deformation, opening of fissures, and surface activity. The volcanic activity of Taal appears to be controlled by dike injections and magma supply, buffered by a hydrothermal system that releases fluids and heat through boiling and subsequent steaming. In early 2005, a multidisciplinary project was launched for studying the hydrothermal activity. To map the hydrothermal system, combined surveys were carried out to investigate self-potential, total magnetic field, ground temperature and carbon dioxide soil degassing, along with satellite thermal imaging of the Main Crater Lake. The elevated temperatures and high concentrations of carbon dioxide, as well as electromagnetic anomalies, indicate large-scale hydrothermal degassing. This process is enhanced along the tectonic features (e.g., crater rim and faults) of the volcano, while active fissures opened along the E–W northern flank during the 1992–1994 seismic activity. Heat and fluids from the hydrothermal system are essentially released in the northern part of the crater, which is bounded to the South by a suspected NW–SE fault along which seismicity seems to take place, and dikes are thought to be intruded. During the January 2005 surveys, a new seismic crisis started, and the felt earthquakes prompted spontaneous evacuation of hundreds of inhabitants living on the volcano. Repeated surveys show changes of self-potential, total magnetic field, and ground temperature with time, without any noticeable spatial enlargement. These observations suggest that the northern flank located between the crater rim and the 1992–1994 fissures is connected with a deep thermal source in Main crater and is reactivated during seismic crises. This sector could be subjected to flank failure.  相似文献   

20.
A major eruption produced several block-and-ash flows about 4,100 years B.P. at Citlaltépetl volcano (Pico de Orizaba), an ice-capped, 5670-m-high, andesitic, active stratovolcano located at the eastern end of the Mexican Volcanic Belt. Repetitive gravitational collapse of a dacitic dome at the summit crater produced a series of block-and-ash flows, lahars, and floods, which were channeled through two main river-valleys on the west and south flanks of the volcano. The total erupted volume is estimated to be at least 0.27 km3. The deposits in both areas are similar in composition, and size, but they differ in the area covered, distribution, and structure. The western deposits form a large fan, cover a larger area, and include numerous laharic and fluviatile deposits. In contrast, the southern deposits form prominent terraces where confined in narrow channels, and have associated laharic units in distal areas, where the flows reach a maximum distance of 30 km from the vent. Directed disruptions of a central summit dome occurred, possibly first to the west and then to the southeast, perhaps due to minor modifications of the summit dome morphology, producing the voluminous block-and-ash flow deposits documented here. The flows were strongly controlled by topography, influencing the deposition of the moving particles. Grain-size variations along the flow paths are hardly detectable suggesting no evident lateral downstream transformations. Because sudden changes in dome morphology may cause significant variations in the direction of future dome collapse, specific areas of potential affectation cannot be predicted. Therefore, about 350,000 inhabitants living within a radius of 35-km from the vent could be potentially impacted if catastrophic block-and-ash flows were to recur in the future from similar summit dome activity. Recognition of these deposits is therefore important for hazard assessment because some seemingly safe areas may be at high risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号