首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of a glacial lake impounded along the retreating, northeastern ice margin of the Fennoscandian Ice Sheet during the last deglaciation and environmental conditions directly following the early Holocene deglaciation have been studied in NE Finland. This so‐called Sokli Ice Lake has been reconstructed previously using topographic and geomorphologic evidence. In this paper a multiproxy approach is employed to study a 3‐m‐thick sediment succession consisting of laminated silts grading into gyttja cored in Lake Loitsana, a remnant of the Sokli Ice Lake. Variations in the sediment and siliceous microfossil records indicate distinct changes in water depth and lake size in the Loitsana basin as the Sokli Ice Lake was drained through various spillways opening up along the retreating ice front. Geochemical data (XRF core‐scanning) show changes in the influence of regional catchment geochemistry (Precambrian crystalline rocks) in the glacial lake drainage area versus local catchment geochemistry (Sokli Carbonatite Massif) within the Lake Loitsana drainage area during the lake evolution. Principal component analysis on the geochemical data further suggests that grain‐size is an additional factor responsible for the variability of the sediment geochemistry record. The trophic state of the lake changed drastically as a result of morphometric eutrophication once the glacial lake developed into Lake Loitsana. The AMS radiocarbon dating on tree birch seeds found in the glaciolacustrine sediment indicates that Lake Loitsana was deglaciated sometime prior to 10 700 cal. a BP showing that tree Betula was present on the deglaciated land surrounding the glacial lake. Although glacial lakes covered large areas of northern Finland during the last deglaciation, only few glaciolacustrine sediment successions have been studied in any detail. Our study shows the potential of these sediments for multiproxy analysis and contributes to the reconstruction of environmental conditions in NE Finland directly following deglaciation in the early Holocene.  相似文献   

2.
A 2 m thick laminated lacustrine deposit of silt and clay recovered from the high-latitudinal site at Sokli (northern Finland) provides a unique mid-Weichselian fossil record for Fennoscandia. High-resolution botanical and zoological analyses of the lacustrine deposit allow detailed reconstruction of the regional vegetational development and of the history of the lake and the wetland ecosystem within the Sokli basin during the early part of the Weichselian Middle Pleniglacial (=equivalent to Marine Isotope Stage (MIS) 3). The inferred terrestrial vegetation represented by the Sokli MIS 3 sequence (so-called Tulppio Interstadial) was probably low-arctic tundra, treeless but with shrub elements including juniper, willow, dwarf birch, ericoids, lycopods and a rich herb flora with a variety of arctic–alpine taxa and heliophilous, pioneer elements. The presence of herbs such as Rubus chamaemorus, Epilobium palustre, Potentilla palustris and Sphagnum, Drepanocladus and other mosses suggests that the lake was fringed by wet meadows and peatlands or peaty telmatic communities. The distributional ranges of pine and tree birch were probably only a few hundred kilometres south or southeast of Sokli. This is concordant with evidence for the presence of boreal tree taxa during the MIS 3 in the Baltic countries and further east in Europe, but contradicts with the commonly inferred treeless tundra or grass-dominated steppe conditions in central Europe.  相似文献   

3.
Engels, S., Helmens, K. F., Väliranta, M., Brooks, S. J. & Birks, H. J. B. 2010: Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. Boreas, Vol. 39, pp. 689–704. 10.1111/j.1502‐3885.2010.00163.x. ISSN 0300‐9483. A 25‐m‐long sediment record spanning the time from the Eemian to the Holocene was recovered from Sokli, northeast Finland. This study focuses on a 6‐m‐long sediment interval that is dated to the Early Weichselian period (MIS 5d and 5c) and consists of lacustrine and fluvial deposits. Using chironomid remains, botanical and zoological macroremains as well as sediment lithology, we were able to reconstruct past changes in the environment, including climate. The results indicate that the site was situated on a flood‐plain during the latter stages of MIS 5d (Herning Stadial) and that summer temperatures might have been ~6 °C lower than at present. Although this value should be treated with caution, as numerical analysis shows that it has a very poor fit‐to‐temperature, this low reconstructed value concurs with several other reconstructions that are available from western Europe. During MIS 5c (Brørup interstadial), the depositional environment changed into a lake system, initially with stratification of the water and subsequently with complete mixing and a strong influence of streams. Both chironomid‐based and macroremain‐based temperature inferences indicate past July air temperatures that were significantly higher than at present. This result is in contrast to other (low‐resolution) reconstructions from northern Fennoscandia that indicate past temperatures 6–7 °C lower than present using fossil coleopteran assemblages. However, several central European sites indicate that there was a phase during the Brørup interstadial that was characterized by high summer temperatures, and a comparison between the high‐resolution reconstructions from western Europe and the results presented in this study suggests that the north–south July air temperature gradient between the mid‐ and high‐latitudes was much weaker during the Brørup interstadial than it is at present. High solar insolation values (particularly the obliquity) during the Brørup interstadial might explain the low summer temperature gradient over the European continent. A return to fluvial conditions occurred in the upper parts of the sediment sequence, and, after a brief interval of gyttja deposition under cooling conditions, the site became glaciated during MIS 5b.  相似文献   

4.
At least five Middle to Late Pleistocene advances of the northern Cordilleran Ice Sheet are preserved at Silver Creek, on the northeastern edge of the St Elias Mountains in southwest Yukon, Canada. Silver Creek is located 100 km up‐ice of the Marine Isotope Stage (MIS) 2 McConnell glacial limit of the St Elias lobe. This site contains ~3 km of nearly continuous lateral exposure of glacial and non‐glacial sediments, including multiple tills separated by thick gravel, loess and tilted lake beds. Infrared‐stimulated luminescence (IRSL) and AMS radiocarbon dating constrain the glacial deposits to MIS 2, 4, either MIS 6 or mid‐MIS 7, and two older Middle Pleistocene advances. This chronology and the tilt of the lake beds suggest Pleistocene uplift rates of up to 1.9 mm a?1 along the Denali Fault since MIS 7. The non‐glacial sediment consists of sand, gravel, loess and organic beds from MIS 7, MIS 3 and the early Holocene. The MIS 3 deposits date to between 30–36 14C ka BP, making Silver Creek one of the few well‐constrained MIS 3‐aged sites in Yukon. This confirms that ice receded close to modern limits in MIS 3. Pollen and macrofossil analyses show that a meadow‐tundra to steppe‐tundra mosaic with abundant herbs and forbs and few shrubs or trees, dominated the environment at this time. The stratigraphy at Silver Creek provides a palaeoclimatic record since at least MIS 8 and comprises the oldest direct record of Pleistocene glaciation in southwest Yukon.  相似文献   

5.
Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS 6/5 and MIS 2/1) and during the MIS 4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namely MIS 6, MIS 4 and MIS 2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.  相似文献   

6.
冰蚀湖中的沉积物不仅记录了湖泊演化及气候变化的历史,还间接地反映冰川发育过程。年保玉则山(果洛山)下的希门错是在冰川强烈退缩后形成的一个典型冰蚀湖。从地域分布上讲,该区冰川发育遗迹分为4个部分,即上希门错以上、上希门错和希门错之间、希门错出口附近和希门错以北6~10km处。前人依据冰碛物的暴露年龄和上覆黄土的热释光年代将上述4组冰碛物划分为4次冰进,包括形成于MIS3阶段的尼格曲冰期、形成于末次盛冰期的希门错冰期、以上希门错和希门错之间的冰碛物作为标志的末次冰消期和形成于全新世的新冰期。通过对采自希门错长达12.8m的岩芯研究发现,希门错自约38kaB.P.以来有连续的湖泊沉积,这一地质证据说明在湖泊存在的这段时间内,冰川规模都没有超过现在湖泊所在位置。希门错冰期的形成时代应该至少老于湖泊沉积物底界的年龄,即大于38kaB.P.,而并非末次冰盛期的产物;尼格曲冰期的形成时代则应该更老。文章还初步分析了湖泊沉积物与冰碛物测年结果代表的不同意义和差别及其造成不一致的原因,认为冰碛物的暴露年代和热释光年代均可能代表了冰川退缩后的年代,而不能代表冰川的形成和发育年龄,冰川存在的时间要比通过冰碛物所测的年代更老。进一步深入研究青藏高原典型冰蚀湖的形成时代、演化过程不仅有利于对湖泊气候环境记录的全面认识,也将为冰川形成与演化历史、特别是冰川形成年代和其他测年资料的科学解释提供可靠的依据。  相似文献   

7.
A 22 m long sediment core from Lake Yamozero on the Timan Ridge in northern Russia has provided evidence of intriguing climatic shifts during the last glacial cycle. An overall shallowing of the lake is reflected in the lower part of the cores, where pollen indicates a transition from glacial steppe vegetation to interstadial shrub-tundra. These beds are capped by a well-defined layer of compact clay deposited in relatively deep water, where pollen shows surrounding spruce forests and warmer-than-present summer temperatures. The most conservative interpretation is that this unit represents the last interglacial period. However, a series of Optical Stimulated Luminescence (OSL) dates suggests that it corresponds with the Early Weichselian Odderade interstadial (MIS 5a). This would imply that the Odderade interstadial was just as warm as a normal interglacial in this continental part of northern Europe. If correct, then pollen analysis, as a correlation tool, is less straightforward and the definition of an interglacial is more complex than previously thought. We discuss the validity and possible systematic errors of the OSL dates on which this age model is based, but conclude they really indicate a MIS 5a age for the warm period. Above the clay is an unconformity, most likely reflecting a period of subaerial exposure implying dry conditions. Deposition of silt under fluctuating cold climates in the Middle Weichselian continued until a second gap in the record at c . 40 kyr BP. The lake basin started to fill up again around 18 kyr BP.  相似文献   

8.
Modern Guaymas Basin (Gulf of California, Mexico) is a region of high diatom productivity where exceptional preservation factors maintain biannually alternating sediment deposition as annual varves. New sediment cores from Guaymas Basin (MD02‐2512 and MD02‐2515) present the opportunity to construct climate records from below the last glacial period. A low‐resolution age model has been constructed from oxygen isotope analysis, correlation with other dated short piston cores from Guaymas Basin and an estimate of sedimentation rate. MD02‐2512 from eastern Guaymas Basin has an age range from the Holocene to late marine isotope stage 6 (MIS 6); MD02‐2515 from western Guaymas Basin has an age range from ~8000 to 40 000 yr. Shipboard analyses of colour reflectance, magnetic susceptibility and sediment density are combined with continuous X‐ray fluorescence scans to reconstruct a picture of glacial climate in the Gulf of California. Eastern Guaymas Basin is affected by glacial sea level fall, which results in a drastic change in productivity rates and sediment type. The laminated record of MIS 5 allows comparison with the Holocene, showing a similarity of sedimentation patterns during deglaciation and a series of very rapid variations just prior to the last glaciation. In western Guaymas Basin there are a series of Younger Dryas‐like events during the glacial, typified by low productivity and high terrigenous input. Long‐term climate and productivity changes appear to be caused by the southward displacement of the Subtropical High pressure zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
We present the longest-duration directly dated terrestrial palaeoclimate record from the western Mediterranean region: a flowstone speleothem from Gitana Cave, southeast Spain. The main phase of growth was 274 to 58 ka, dated by multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) U-series methods. Effective precipitation, which we consider primarily responsible for flowstone calcite δ13C variations, measured at 300 μm resolution, was higher during interglacials associated with marine oxygen isotope stages (MIS) 7 and 5, and lower during glacial MIS 6. There is a close correspondence between speleothem δ13C and sea surface temperature (SST) estimates from adjacent Atlantic Ocean cores during MIS 6, which implies that oceanic conditions are critical in controlling the western Mediterranean terrestrial moisture balance during glacial periods. Other features of our record, such as the sequence of termination II warming/moistening between approximately 133 and 127 ka, including a “pause” around 130–128 ka, and the lagged termination of MIS 5 warm intervals (5e, 5c and 5a) are similar to other terrestrial records within the Mediterranean basin, indicating climate synchroneity along the northern Mediterranean coast. The Gitana cave region also may have been a refugium for temperate species during short-lived cold/arid periods during MIS 5.  相似文献   

11.
The Rautuvaara section in northern Finnish Lapland has been widely considered as the stratotype for the northern Fennoscandian late Middle and Late Pleistocene. It exposes four till units interbedded with sorted sediments resting on Precambrian bedrock. In order to shed light on the Scandinavian Ice Sheet (SIS) history and palaeoenvironmental evolution in northern Fennoscandia through time, a chronostratigraphical study was carried out at the Rautuvaara site. The succession was studied using sedimentological methods and different sand‐rich units between till units were dated using the Optical Stimulated Luminescence (OSL) method. The results obtained indicate that the whole sediment succession at Rautuvaara was deposited during the Weichselian Stage and there is no indication of older deposits. The SIS advanced across Finnish Lapland to adjacent areas to the east at least once during the Early Weichselian, twice during the Middle Weichselian (~MIS 4 and MIS 3) and once during the Late Weichselian substages. Glaciolacustrine sediments interbedded between the till units indicate that a glacial lake repeatedly existed after each deglacial phase. The results also suggest that there were two ice‐free intervals in northern Fennoscandia during the Middle Weichselian close to the SIS glaciation centre.  相似文献   

12.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

13.
A stalagmite from northern Norway is dated with 12 thermal ionization mass spectrometry U-Th dates, and at least four separate growth periods are identified that correspond with marine isotope stages 9, 11, 13, and probably 15. The calcite is tested for isotopic equilibrium with the Hendy test. Oxygen isotope measurements on 231 subsamples on a vertical transect are used as a paleotemperature proxy. The detailed isotopic record from MIS 9 show apparent similarities to a Holocene record from the same cave, both in the climatic evolution and the overall temperatures: both show temperature oscillations changing from high-frequency, low-amplitude cycles in the beginning of the interglacial period to lower frequency, higher amplitude cycles in the later part of the interglacial period. The isotope record from MIS 11 shows a distinct isotopic event toward heavier values. The isotopic record together with the porous, humus-rich calcite are interpreted as indicating a warmer than present interglacial period with several episodes of heavy rainfall.  相似文献   

14.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

15.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

16.
地处南亚季风区的沙鲁里山地区保留有丰富的第四纪冰川作用遗迹。文章通过ESR对冰碛物直接定年,结合冰碛地貌形态及其风化程度差异,结果表明沙鲁里山地区可能经历了4次规模较大的冰川作用。它们的ESR年代大约为19~16kaB.P.,48~43kaB.P.,135kaB.P.和571kaB.P.,分别与深海氧同位素第2、第3、第6、第16阶段对应。自沙鲁里山最早冰川作用(571kaB.P.)以后,该区经历了较大规模的抬升作用。MIS2和MIS4期间西南季风微弱,降水稀少,气温严寒,南亚季风区冰川发育受到一定限制。MIS3早期和晚期夏季风强盛,降水丰富,温度较高,水热平衡状况有利于冰川发育;MIS3中期气温较低,夏季风较强盛,降水较丰富,这种冷湿组合的气候条件有利于冰川发育。南亚季风区,MIS3期间的冰川前进规模不亚于甚至在某些区域超过了末次盛冰期,其主要原因可能是受制于夏季风的降水差异。  相似文献   

17.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment cores were collected from three Louisiana coastal marsh ponds, dated with radioisotopes, and analyzed for diatom remains to determine if long-term salinity changes were evident in the sediment record. A diatom-based salinity index formulated from a statistical comparison of available salinity data and changing diatom assemblages demonstrated that diatom remains appear to preserve salinity signals in coastal brackish and salt marsh environments. The salinity index was applied to sediment cores spanning the late 1600s to the 1990s and provided a more complete record of salinity than field data, which were temporally and spatially incomplete. The salinity reconstructions indicated that salinity has increased at two sites and decreased at a third since the early 1900s. The salinity changes are less than 1‰ per decade in all cases, and may be due to natural variability as depicted by the wide range of salinities observed between the late 1600s and 1900. Salinity regimes may be very localized (<2 km from a hydrologic source), indicating single-site studies may not be applicable to regional inferences. This study demonstrates that diatoms can be used to reconstruct past salinity in coastal marsh environments and can provide a useful tool with which to study the changing hydrology of river-influenced ecosystems.  相似文献   

19.
We examine pollen, macrofossils and sedimentological proxies from the Ridge Site, an 18‐m sequence of glacial and non‐glacial sediments exposed along the bank of the Ridge River in the southern Hudson Bay Lowlands (HBL), Canada. As the HBL is located in the previously glaciated region of North America, palaeorecords from this region have important implications for understanding ice‐sheet palaeogeography and climate for the late Pleistocene. Two diamicton units were interpreted as subglacial till deposited by a glacier flowing toward the south‐southwest (lower diamicton) and west‐southwest (upper diamicton), respectively. Confined between these tills is a 6‐m non‐glacial unit, constrained to Marine Isotope Stage 3 (MIS 3; c. 57 000 to c. 29 000 a BP) by three radiocarbon dates. Quantitative analyses of the pollen record (dominated by Sphagnum, Cyperaceae, Pinus, Picea, Salix, Alnus and Betula) suggest that average summer temperature (June, July, August) was 14.6±1.51 °C, which is similar to that of the present day at the site. Total annual precipitation was 527±170 mm as compared to 705 mm present‐day. The macrofossil record confirmed the local presence of Betula, Salix and conifers. Our results, in combination with other records from the periphery of the Laurentide Ice Sheet, suggest that vast boreal forest‐type vegetation, along with a drier interstadial climate, existed in the region during MIS 3. We also compare pollen‐derived palaeoclimate reconstructions from the Ridge Site with reconstructions from a previously published site along the Nottaway River, HBL, which was dated to MIS 5a–d (c. 109 000 to c. 82 000 a BP). This comparison suggests that, with additional data, it may be possible to differentiate MIS 3 and MIS 5 deposits in the HBL on the basis of relative continentality, with MIS 3 characterized by lower total annual precipitation, and MIS 5 by values similar or greater than present‐day.  相似文献   

20.
Highstands in the Marine Isotope Stage (MIS) 3 based on 14C dating in the Qinghai–Tibetan Plateau (QTP) are widely documented. Recent records from shoreline sediments dated using U‐series and/or optically stimulated luminescence (OSL), however, reveal that the highstands originally dated in MIS 3 should now be considered to fall in MIS 5. This paper provides new evidence from the interior of the QTP, based on the grain‐size from a continuous lake core in the Zabuye Salt Lake, to verify the MIS 5 highstand in the QTP. Grain‐size analysis of the core sediments also distinguishes two other highstands in MIS 3 and MIS 2, respectively. The MIS 5 highstand is considered as the maximum lake level since the Last Interglacial, as cored sediments contain very low values of Median Diameter (Md) during MIS 5. Compared with the discontinuous records from lake shorelines sediments, the grain‐size records from the continuous lake centre core sediments provide a more complete dataset to infer lake level variations, and make it possible to make wider palaeoclimatic and palaeoenvironmental interpretation. In the interior of the QTP, highstands might have continued into cold climate periods due to the reduced evaporation rates in the latter. The influence of the moisture‐bearing southerly‐shifted Westerly wind pathway may also have contributed to the highstands in the glacial period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号