首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Dynamical rupture process on the fault is investigated in a quasi-three-dimensional faulting model with non-uniform distributions of static frictions or the fracture strength under a finite shearing pre-stress. The displacement and stress time functions on the fault are obtained by solving numerically the equations of motion with a finite stress—fracture criterion, using the finite difference method.
If static frictions are homogeneous or weakly non-uniform, the rupture propagates nearly elliptically with a velocity close to that of P waves along the direction of pre-stress and with a nearly S wave velocity in the direction perpendicular to it. The rise time of the source function and the final displacements are larger around the centre of the fault. In the case when the static frictions are heavily non-uniform and depend on the location, the rupture propagation becomes quite irregular with appreciably decreased velocities, indicating remarkable stick-slip phenomena. In some cases, there remain unruptured regions where fault slip does not take place, and high stresses remain concentrated up to the final stage. These regions could be the source of aftershocks at a next stage.
The stick—slip faulting and irregular rupture propagation radiate high-frequency seismic waves, and the near-field spectral amplitudes tend to show an inversely linear frequency dependence over high frequencies for heavily non-uniform frictional faults.  相似文献   

2.
Source models such as the k -squared stochastic source model with k -dependent rise time are able to reproduce source complexity commonly observed in earthquake slip inversions. An analysis of the dynamic stress field associated with the slip history prescribed in these kinematic models can indicate possible inconsistencies with physics of faulting. The static stress drop, the strength excess, the breakdown stress drop and critical slip weakening distance D c distributions are determined in this study for the kinematic k -squared source model with k -dependent rise time. Several studied k -squared models are found to be consistent with the slip weakening friction law along a substantial part of the fault. A new quantity, the stress delay, is introduced to map areas where the yielding criterion of the slip weakening friction is violated. Hisada's slip velocity function is found to be more consistent with the source dynamics than Boxcar, Brune's and Dirac's slip velocity functions. Constant rupture velocities close to the Rayleigh velocity are inconsistent with the k -squared model, because they break the yielding criterion of the slip weakening friction law. The bimodal character of D c / D tot frequency–magnitude distribution was found. D c approaches the final slip D tot near the edge of both the fault and asperity. We emphasize that both filtering and smoothing routinely applied in slip inversions may have a strong effect on the space–time pattern of the inferred stress field, leading potentially to an oversimplified view of earthquake source dynamics.  相似文献   

3.
The dynamic coalescence of two mode II cracks on a planar fault is simulated here using the elastodynamic boundary integral equation method. We focus on the complexity of the resultant slip rate and seismic radiation in the crack coalescence model (CCM) and on the reconstruction of a single crack model (SCM) that can reproduce the CCM waveforms from heterogeneous source parameters rather than coalescence. Simulation results reveal that localized higher slip rates are generated by coalescence as a result of stress interaction between the approaching crack tips. The synthesized seismic radiation exhibits a distinct coalescence phase that has striking similarities to stopping phases in the radiation and propagation properties. The corresponding SCM yields a singular increase in the stress drop distribution, which is accompanied by a sudden decrease in it across the point of coalescence in the CCM. This implies that the generation of high-frequency radiation is more efficient from coalescence than from stopping, although both phenomena exhibit the same strong  ω−2  -type displacement spectra.  相似文献   

4.
Two distinct phases are commonly observed at the initial part of seismograms of large shallow earthquakes: low-frequency and low-amplitude waves following the onset of a P wave ( P 1) are interrupted by the arrival of the second impulsive phase P2 enriched with high-frequency components. This observation suggests that a large shallow earthquake involves two qualitatively different stages of rupture at its nucleation.
We propose a theoretical model that can naturally explain the above nucleation behaviour. The model is 2-D and the deformation is assumed to be anti-plane. A key clement in our model is the assumption of a zone in which numbers of pre-existing cracks are densely distributed; this cracked zone is a model for the fault zone. Dynamic crack growth nucleated in such a zone is intensely affected by the crack interactions, which exert two conflicting effects: one tends to accelerate the crack growth, and the other tends to decelerate it. The accelerating and decelerating effects are generally ascribable to coplanar and non-coplanar crack interactions, respectively. We rigorously treat the multiple interactions among the cracks, using the boundary integral equation method (BIEM), and assume the critical stress fracture criterion for the analysis of spontaneous crack propagation.
Our analysis shows that a dynamic rupture nucleated in the cracked zone begins to grow slowly due to the relative predominance of non-coplanar interactions. This process radiates the P1 phase. If the crack continues to grow, coalescence with adjacent coplanar cracks occurs after a short time. Then, coplanar interactions suddenly begin to prevail and crack growth is accelerated; the P2 phase is emitted in this process. It is interpreted that the two distinct phases appear in the process of the transition from non-coplanar to coplanar interaction predominance.  相似文献   

5.
ABSTRACT
Panamint Valley, in eastern California, is an extensional basin currently bounded by active, dextral-normal oblique-slip faults. There is considerable debate over the tectonic and topographic evolution of the valley. The least-studied structure, the Ash Hill fault, runs for some 50 km along the valley's western edge, and active strands of the fault continue south into the neighbouring Slate Range. Vertical displacement on the fault is valley-side up, creating topography that conflicts with the gross morphology of the valley itself. We use this topography, along with kinematic and geological markers, to constrain the Quaternary slip rate and orientation of the Ash Hill fault. The fault offsets all but the active channel deposits in the valley, and slickenlines indicate a strike-slip to dip-slip ratio of 3.5:1. An offset volcanic unit dated at 4 Ma provides a minimum slip rate of 0.3±0.1 mm yr−1, and a long-term strike-slip to dip-slip ratio of 5.2:1. Slip on the fault has warped a palaeolake shoreline within the valley. Simple elastic dislocation modelling of the vertical deformation of the shoreline suggests total fault slip of ≈60 m, valley-side up. The shoreline probably dates to 120–150 ka, implying a late Quaternary slip rate of 0.4–0.5 mm yr−1. We suggest two possible mechanisms for the apparently anomalous slip behaviour of the Ash Hill fault. The fault may be a listric structure related to the proposed low-angle fault underlying Panamint Valley. Alternatively, the Ash Hill fault is a high-angle fault, implying that the valley is currently bounded by high-angle dextral-slip faults. Lack of detailed subsurface information precludes any knowledge of the true relationships between the presently active faults.  相似文献   

6.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   

7.
The 2003 Tokachi-oki earthquake ruptured a large area of approximately 100 km2. The location of the largest asperity was estimated to be several dozen kilometres offshore of Hokkaido, Japan. The magnitude measured 8.0 on the Japan Meteorological Agency scale, and several studies used waveform inversion analysis to estimate the moment-magnitude as M w 8.0–8.2. Several studies reported that there was a minor asperity at the northeastern edge of the fault plane, and that the rupture velocity towards the minor asperity was less than that towards the main asperity. One of them illustrated that the location and timing of the minor asperity were poorly constrained. In this paper, we introduce a procedure based on semblance analysis to image the location of the minor northeastern asperity with improved resolution. We group 15 strong-motion seismographs into three arrays, and we perform semblance analysis on impulsive waves that were possibly generated from the minor asperity and were conspicuously observed at stations in eastern Hokkaido. By projecting the semblance values onto the fault plane, we estimate the location of the minor asperity. We find it to be shallower and farther from the coast than the previous results indicated. The average rupture velocity towards the asperity is estimated to be 2.5 km s−1, which is slower than the 3.6 km s−1 obtained by waveform inversion analysis.  相似文献   

8.
We invert surface-wave and geodetic data for the spatio-temporal complexity of slip during the M w =8.1 Chile 1995 event by simulated annealing. This quasi-global inversion method allows for a wide exploration of model space, and retains the non-linearity of the source tomography problem. Complex source spectra are obtained from 5 to 45 mHz from first- and second-orbit fundamental-mode Rayleigh waves using an empirical Green's function cross-correlation technique. Coseismic displacement vectors were measured at 10 GPS sites near Antofagasta. They are part of a French-Chilean experiment which monitors the Northern Chile seismic gap. The spectra, together with the geodetic data, are inverted for the moment distribution on a 2-D dipping fault, under the physical constraints of slip positivity and causality. Marginal a posteriori distributions of the model parameters are obtained from several independently inverted solutions. In general, features of the slip model are well resolved. Data are well fitted by a purely unilateral southward rupture with a nearly uniform velocity around 2.5–3.0 km s−1, and a total duration of 65 s. Several regions of moment release were imaged, one near the hypocentre, a major one 80 km south of it and a minor one 160 km south of it. The major patch of moment release seemed to have propagated to relatively shallow depths near the trench, 100 km SSW of the epicentre. The region of major slip is located updip of the 1987, M w =7.5 earthquake, suggesting a causal relationship. Most of the slip occurred updip of the hypocentre (36 km), but the entire coupled plate interface (20–40 km) ruptured during the Chile 1995 event.  相似文献   

9.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

10.
Summary. Following the classic work of Eshelby, the slip and stress distributions due to an elliptical plane shear crack are evaluated. The relation between average (or maximum) slip on the crack and the (constant) static stress drop, for faults of different aspect ratios, is found. The slip vector is not parallel to the applied stress but makes a small angle to it, except when the stress is applied along the major or minor axis of the ellipse. The stress -distribution around the crack shows that in addition to the expected stress concentration along the crack edge, there are broad regions of stress increase off the crack plane for circular and elliptical cracks, similar to those known to exist for in-plane but not for antiplane shear cracks. Whether the stress- intensity factor at the end of one axis is greater or less than that at the end of the other axis ( ka ≶ kb ), depends on the condition: √ b/a ≶ (1 − v ) where a and b are the semi-axes of the ellipse, ka and kb are the stress-intensity factors at the end of the a- and b -axes and v is Poisson's ratio. The total stress-intensity factor varies smoothly along the edge of the ellipse from one axis to the other and it is found that this variation is rather small.  相似文献   

11.
In an attempt to improve the ground motion modelling, the characteristics of the slip velocity functions (SVF) generated using the kinematic k −2 source are investigated and compared to the dynamic solutions proposed in the literature. Several numerical simulations were performed to test the influence of the model parameters on the SVF modelling. Overall, the shapes of SVF are very complex and exhibit a large variability in time and space. However, we found out that the mean SVF is a simple boxcar with duration equal to the largest rise time value. In the areas of weak slip, the SVFs are characterized by the existence of negative values, whereas in large slip areas, the SVF is more impulsive. Overall, on the examples investigated, the SVFs modelled with this k −2 source model are different from a typical Kostrov's solution. The critical analysis of the kinematic k −2 source led us to identify the Fourier decomposition of the slip to be responsible for these difficulties, and to propose a new recombination scheme. It consists of adding a positive correction to the Fourier slip components. The slip is described as the sum of positive contributions at various scales. The SVFs modelled using this new scheme are greatly improved. Moreover, through several parametrical analyses performed to qualify this new approach, we show that the SVF are corrected while preserving the essential quality of the k −2 modelling, that is, the ω2 spectral shape and C d apparent directivity of the synthetic accelerograms. Strong ground motion modelling in the near-fault region was made and numerical ground motion parameters were compared to the empirical relationships. We show that predicted peak ground motion is consistent with near-source attenuation laws.  相似文献   

12.
We use GPS displacements collected in the 15 months after the 1999 Chi-Chi, Taiwan earthquake  ( M w 7.6)  to evaluate whether post-seismic deformation is better explained by afterslip or viscoelastic relaxation of the lower crust and upper mantle. We find that all viscoelastic models tested fail to fit the general features in the post-seismic GPS displacements, in contrast to the satisfactory fit obtained with afterslip models. We conclude that afterslip is the dominant mechanism in the 15-month period, and invert for the space–time distribution of afterslip, using the Extended Network Inversion Filter. Our results show high slip rates surrounding the region of greatest coseismic slip. The slip-rate distribution remains roughly stationary over the 15-month period. In contrast to the limited coseismic slip on the décollement, afterslip is prominent there. Maximum afterslip of 0.57 m occurs downdip and to the east of the hypocentral region. Afterslip at hypocentral depths is limited to the southern part of the main shock rupture, with little or no slip on the northern section where coseismic slip was greatest. Whether this results from along strike variations in frictional properties or dynamic conditions that locally favour stable sliding is not clear. In general, afterslip surrounds the area of greatest coseismic slip, consistent with post-seismic slip driven by the main shock stress change. The total accumulated geodetic afterslip moment is  3.8 × 1019 N m  , significantly more than the seismic moment released by aftershocks,  6.6 × 1018 N m  . Afterslip and aftershocks appear to have different temporal evolutions and some spatial correlations, suggesting that aftershock rates may not be completely controlled by the rate of afterslip.  相似文献   

13.
Summary. Asymptotic results, applicable at high frequencies, are established for elastodynamic propagator or transfer matrices. We are concerned here with a single layer, by which we shall mean a region of a spherically-symmetric earth model in which physical properties vary smoothly with radius, or a region of a plane-stratified earth model in which physical properties vary smoothly with depth. Results are obtained for the spheroidal and toroidal oscillations of a solid spherical layer, the spheroidal oscillations of a spherical fluid layer, P-SV and SH waves in a plane solid layer and P waves in a plane fluid layer. Each of these results is given to first order in ω−1 where ω is the angular frequency.  相似文献   

14.
We present geological and morphological data, combined with an analysis of seismic reflection lines across the Ionian offshore zone and information on historical earthquakes, in order to yield new constraints on active faulting in southeastern Sicily. This region, one of the most seismically active of the Mediterranean, is affected by WNW–ESE regional extension producing normal faulting of the southern edge of the Siculo–Calabrian rift zone. Our data describe two systems of Quaternary normal faults, characterized by different ages and related to distinct tectonic processes. The older NW–SE-trending normal fault segments developed up to ≈400  kyr ago and, striking perpendicular to the main front of the Maghrebian thrust belt, bound the small basins occurring along the eastern coast of the Hyblean Plateau. The younger fault system is represented by prominent NNW–SSE-trending normal fault segments and extends along the Ionian offshore zone following the NE–SW-trending Avola and Rosolini–Ispica normal faults. These faults are characterized by vertical slip rates of 0.7–3.3  mm  yr −1 and might be associated with the large seismic events of January 1693. We suggest that the main shock of the January 1693 earthquakes ( M ~ 7) could be related to a 45  km long normal fault with a right-lateral component of motion. A long-term net slip rate of about 3.7  mm  yr −1 is calculated, and a recurrence interval of about 550 ± 50  yr is proposed for large events similar to that of January 1693.  相似文献   

15.
16.
Summary. Two-dimensional crack problems in elastic homogeneous isotropic media are considered which describe rupture over a fault surface characterized by non-uniform stress drop. Solutions can be found in which the stress field is finite at the crack tips and the rupture surface is not assigned a priori , but is part of the solution. These crack models are found to be consistent with the frictional stress threshold criterion for slip arrest over pre-existing fault surfaces. A crack is found to stop when its contribution to the stress field is opposite to the stress drop at the crack tips. The quasi-static propagation of a crack up to the arrest configuration is studied in terms of the minimum energy principle. The crack spontaneously propagates in such a way as to make the value of the stress intensity factor at one tip equal to the value at the other tip. Furthermore a tip propagating in a region with higher friction is found to move more slowly than the other tip propagating in a region with lower friction. Simple criteria for fracture arrest are derived, in terms of a properly averaged stress drop. Piecewise constant stress drop profiles are explicitly considered yielding a variety of solutions which can be applied to modelling asperities or barriers over a fault plane. The evaluation of the amount of the energy released during the quasi-static crack propagation shows that stopping phases cannot be efficiently radiated if the crack comes to rest in a low friction region.  相似文献   

17.
Summary. This note presents an exact analytical formula for determining the magnitude of coseismic surface volume change (δ V ) of earthquake faults in a half-space. For a Poisson solid, the formula is remarkably simple; δ V = M zz |8μ, where M zz is one of the moment tensor elements of the source. Maximum δ V values derive from dip slip on faults plunging 45°. For these events, surface volume changes of 0.0001 and 4.3 km3 can be expected for magnitude 5 and 8 earthquakes respectively. All of the coseismic surface volume change is recovered in the interseismic period through relaxation of the Earth and rebound of the surface. A useful rule of thumb for estimating the magnitude of vertical rebound in 45° dip slip events is δ h p=Δ s /24, where Δ s is the coseismic slip on the fault.  相似文献   

18.
Modelling dynamic rupture for complex geometrical fault structures is performed through a finite volume method. After transformations for building up the partial differential system following explicit conservative law, we design an unstructured bi-dimensional time-domain numerical formulation of the crack problem. As a result, arbitrary non-planar faults can be explicitly represented without extra computational cost. On these complex surfaces, boundary conditions are set on stress fluxes and not on stress values. Prescribed rupture velocity gives accurate solutions with respect to analytical ones depending on the mesh refinement, while solutions for spontaneous propagation are analysed through numerical means. An example of non-planar spontaneous fault growth in heterogeneous media demonstrates the good behaviour of the proposed algorithm as well as specific difficulties of such numerical modelling.  相似文献   

19.
Summary. We investigate one-dimensional waves in a standard linear solid for geophysically relevant ranges of the parameters. The critical parameters are shown to be T*= tu/Qm where t u is the travel time and Qm the quality factor in the absorption band, and τ−1 m , the high-frequency cut-off of the relaxation spectrum. The visual onset time, rise time, peak time, and peak amplitude are studied as functions of T* and τ m. For very small τ m , this model is shown to be very similar to previously proposed attenuation models. As τ m grows past a critical value which depends on T* , the character of the attenuated pulse changes. Seismological implications of this model may be inferred by comparing body wave travel times with a'one second'earth model derived from long-period observations and corrected for attenuation effects assuming a frequency independent Q over the seismic band. From such a comparison we speculate that there may be a gap in the relaxation spectrum of the Earth's mantle for relaxation times shorter than about one second. However, observational constraints from the attenuation of body waves suggest that such a gap might in fact occur at higher frequencies. Such a hypothesis would imply a frequency dependence of Q in the Earth's mantle for short-period body waves.  相似文献   

20.
We combine Global Positioning System (GPS) measurements with forward modelling of viscoelastic relaxation and after-slip to study the post-seismic deformation of the 1997 Umbria-Marche (Central Apennines) moderate shallow earthquake sequence. Campaign GPS measurements spanning the time period 1999–2003 are depicting a clear post-seismic deformation signal. Our results favour a normal faulting rupture model where most of the slip is located in the lower part of the seismogenic upper crust, consistent with the rupture models obtained from the inversion of strong motion data. The preferred rheological model, obtained from viscoelastic relaxation modelling, consists of an elastic upper crust, underlain by a transition zone with a viscosity of 1018 Pa s, while the rheology of deeper layers is not relevant for the observed time-span. Shallow fault creep and after-slip at the base of the seismogenic upper crust are the first order processes behind the observed post-seismic deformation. The deep after-slip, below the fault zone at about 8 km depth, acting as a basal shear through localized time-dependent deformation, identifies a rheological discontinuity decoupling the seismogenic upper crust from the low-viscosity transition zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号