首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The northeast-trending Pallatanga right-lateral strike-slip fault runs across the Western Cordillera connecting N50E-N70E trending normal faults in the Gulf of Guayaquil with N-S reverse faults in the Interandean Depression. Over most of its length, the fault trace has been partly obscured by erosional processes and can be inferred in the topography only at the large scale. Only the northern fault segment, which follows the upper Rio Pangor valley at elevations above 3600 m, is prominent in the morphology. Valleys and ridges cut and offset by the fault provide an outstanding record of right-lateral cumulative fault displacement. The fault geometry and kinematics of this particular fault segment can be determined from detailed topographic levellings. The fault strikes N30E and dips 75 to the NW. Depending on their size and nature, transverse morphological features such as tributaries of the Rio Pangor and intervening ridges, reveal right-lateral offsets which cluster around 27 ± 11m, 41.5 ± 4 m, 590 ± 65 m and 960 ± 70 m. The slip vector deduced from the short-term offsets shows a slight reverse component with a pitch of about 11.5 SW. The 41.5 ± 4 m displacements are assumed to be coeval with the last glacial termination, yielding a mean Holocene slip-rate of 2.9- 4.6 mm yr−1. Assuming a uniform slip rate on the fault in the long term, the 27 m offset appears to correlate with an identified middle Holocene morphoclimatic event, and the long term offsets of 590 m and 960 m coincide with the glacial terminations at the beginning of the last two interglacial periods.  相似文献   

2.
The geological features now exposed at Mormon Point, Death Valley, reveal processes of extension that continue to be active, but are concealed beneath the east side of Death Valley. Late Cenozoic sedimentary rocks at Mormon Point crop out in the hangingwall of the Mormon Point low-angle normal fault zone, a fault zone that formed within a releasing bend of the oblique-slip (right-normal slip) fault zone along the east side of Death Valley. The late Cenozoic sedimentary rocks were part of the valley when the low-angle fault zone was active, but during late Quaternary time they became part of the Black Mountains block and were uplifted. Rocks and structures exposed at Mormon Point are an example of the types of features developed in a releasing bend along the margins of a major pull-apart structure, and in this example they are very similar to features associated with regional detachment faults. The oldest sedimentary rocks in the hangingwall of the Mormon Point low-angle fault zone dip steeply to moderately east or north-east and were faulted and rotated in an extensional kinematic environment different from that recorded by rocks and structures associated with younger rocks in the hangingwall. Some of the younger parts of the late Cenozoic sedimentary rocks were deposited, faulted and rotated during movement on the Mormon Point low-angle normal fault. Progressively, strata are less faulted and less rotated. The Mormon Point low-angle normal fault has an irregular fault surface whose segments define intersections that plunge 18°-30°, N10°-40°W, with a maximum of 22°, N22°W that we interpret to be the general direction of slip. Thus, even though Death Valley trends north, movement on the faults responsible for its formation was at least locally north-northwest. Gouge and disrupted conglomerates along the faults are interpreted to have formed either as adjustments to accommodate space problems at the corners of blocks or along faults that bounded blocks during their displacement and rotation. The younger units of the late Cenozoic sedimentary rock sequence and the geomorphic surfaces developed on them are rarely faulted, not rotated, and overlap the Mormon Point low-angle faults. Active faults cut Holocene alluvium north of the late Cenozoic rocks and form the present boundary between Mormon Point and the Black Mountains. The distribution of active faults defines a releasing bend that mimics the older releasing bend formed by the Mormon Point low-angle fault zone. Rocks and structures similar to those exposed above the Mormon Point low-angle fault zone are probably forming today beneath the east side of Death Valley north-west of Mormon Point.  相似文献   

3.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

4.
Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan)   总被引:11,自引:0,他引:11  
The Araba valley lies between the southern tip of the Dead Sea and the Gulf of Aqaba. This depression, blanketed with alluvial and lacustrine deposits, is cut along its entire length by the Dead Sea fault. In many places the fault is well defined by scarps, and evidence for left-lateral strike-slip faulting is abundant. The slip rate on the fault can be constrained from dated geomorphic features displaced by the fault. A large fan at the mouth of Wadi Dahal has been displaced by about 500 m since the bulk of the fanglomerates were deposited 77–140 kyr ago, as dated from cosmogenic isotope analysis (10Be in chert) of pebbles collected on the fan surface and from the age of transgressive lacustrine sediments capping the fan. Holocene alluvial surfaces are also clearly offset. By correlation with similar surfaces along the Dead Sea lake margin, we propose a chronology for their emplacement. Taken together, our observations suggest an average slip rate over the Late Pleistocene of between 2 and 6 mm yr−1, with a preferred value of 4 mm yr−1. This slip rate is shown to be consistent with other constraints on the kinematics of the Arabian plate, assuming a rotation rate of about 0.396° Myr−1 around a pole at 31.1°N, 26.7°E relative to Africa.  相似文献   

5.
《Geomorphology》2002,42(3-4):255-278
The Hunter Mountain fault zone strikes northwesterly, is right-lateral strike-slip, and kinematically links the northern Panamint Valley fault zone to the southern Saline Valley fault zone. The most recent displacement of the fault is recorded in the offset of Holocene deposits along the entire length of the fault zone. Right-lateral offsets of drainage channels within Grapevine Canyon reach up to 50 to 60 m. Initial incision of the offset channels is interpreted on the basis of geomorphic and climatic considerations to have occurred approximately 15 ka. The 50 to 60 m of offset during 15 ka corresponds to a right-lateral fault slip rate of 3.3–4.0 mm/year within Grapevine Canyon. Further to the north along the Nelson Range front, the fault is composed of two sub-parallel fault strands and the fault begins to show an increased normal component of motion. A channel margin that is incised into a Holocene surface that is between 10 and 128 ka in age is offset 16–20 m, which yields a broad minimum bound on the lateral slip rate of 0.125–2.0 mm/year. The best preserved single-event displacements recorded in Holocene deposits range from 1.5 to 2.5 m. In addition to faulting within Grapevine Canyon and the main rangefront fault along the southwest edge of Saline Valley, there also exist normal fault strands within the Valley that strike northeasterly and towards Eureka Valley. The northeasterly striking normal faults in the Valley appear to be actively transferring dextral slip from the Hunter Mountain fault zone north and east onto the Furnace Creek fault zone. Separations on northerly trending, normal faults within Saline Valley yield estimates of slip rates in the hundredths of millimeters per year.  相似文献   

6.
We identify and describe a series of east–west left-lateral strike-slip faults (named the Songino-Margats, the Hag Nuur, the Uliastay and the South Hangay fault systems) in the Hangay mountains of central Mongolia: an area that has little in the way of recorded seismicity and which is often considered as a rigid block within the India–Eurasia collision zone. The strike-slip faults of central Mongolia constitute a previously unrecognized hazard in this part of Mongolia. Each of the strike-slip faults show indications of late Quaternary activity in the form of aligned sequences of sag-ponds and pressure-ridges developed in alluvial deposits. Total bed-rock displacements of ∼3 km are measured on both the Songino-Margats and South Hangay fault systems. Bed-rock displacements of 11 km are observed across the Hag Nuur fault. Cumulative offset across the Uliastay fault systems are unknown but are unlikely to be large. We have no quantitative constraint on the age of faulting in the Hangay. The ≤20 km of cumulative slip on the Hangay faults might, at least in part, be inherited from earlier tectonic movements. Our observations show that, despite the almost complete absence of instrumentally recorded seismicity in the Hangay, this part of Mongolia is cut through by numerous distributed strike-slip faults that accommodate regional left-lateral shear between Siberia and China. Central Mongolia is thus an important component of the India–Eurasia collision that would be overlooked in models of the active tectonics based on the distribution of seismicity. We suggest that active faults such as those identified in the Hangay of Mongolia might exist in other, apparently aseismic, regions within continental collision zones.  相似文献   

7.
The Northern Death Valley fault zone is a major right-lateral structure that has accommodated 70 km or more of regional transtensional deformation in Tertiary to Recent time. Extension parallel to its north-west transport direction in the Death Valley region of California has produced ‘pull-apart’ structures that are responsible for opening the central Death Valley rhombochasm. In several ranges along the length of the Northern Death Valley fault zone, there is also evidence for extension directed to the south-west, normal to strike-slip movement. Evidence from the Funeral, Grapevine and Cottonwood Mountains suggests that a significant amount of down-dip slip has occurred on the Northern Death Valley fault zone and parallel structures (together referred to as the Northern Death Valley fault system) coeval with the majority of right-lateral slip and transform-parallel extension. As a result of both these components of extension, a separate basin opened in northern Death Valley with an orientation and architecture very different from that of central Death Valley. In addition, the Northern Death Valley fault system may be responsible for the present topography of the Funeral and Grapevine Mountains. Transform-normal extension appears to be the result of a misorientation of the Northern Death Valley fault zone within the regional stress field over the past 6 Myr, as suggested by simple geometric calculations.  相似文献   

8.
The Kopeh Dagh is a linear mountain range separating the shortening in Iran from the stable, flat Turkmenistan platform. In its central part is an array of active right-lateral strike-slip faults that obliquely cut the range and produce offsets of several kilometres in the geomorphology and geological structure. They are responsible for major destructive earthquakes in the 19th and 20th centuries and represent an important seismic hazard for this now-populous region of NE Iran. These strike-slip faults all end in thrusts, revealed by the uplift and incision of Late Quaternary river terraces, and do not continue beyond the Atrak river valley, which forms the southern margin of the Kopeh Dagh. The cumulative offset on these strike-slip faults, and their associated rotation about vertical axes, can account for ∼60 km of N–S shortening. This value is similar to estimates of the Late Quaternary N–S right-lateral shear between central Iran and Afghanistan, which must be accommodated in NE Iran. The strike-slip faults also require ∼30 km of along-strike extension of the Kopeh Dagh, which is taken up by the westward component of motion between the South Caspian Basin and both Eurasia and Central Iran. It is probable that these motions occurred over the last ∼10 Ma.  相似文献   

9.
The segment of the Interandean Depression of Ecuador between Ambato and Quito is characterized by an uppermost Pliocene–Quaternary basin, which is located between two N-S trending reverse basement faults: the Victoria Fault to the west, and the Pisayambo Fault to the east. The clear evidence of E-W shortening for the early Pleistocene (between 1.85 and 1.21 Ma) favours a compressional basin interpretation. The morphology (river deviations, landslides, folded and flexure structures) demonstrates continuous shortening during the late Quaternary. The late Pliocene-Quaternary shortening reached 3400 ± 600 m with a rate of 1.4 ± 0.3 mm yr−1. The E-W shortening is kinematically consistent with the current right-lateral reverse motion along the NE-SW trending Pallatanga Fault. The Quito-Ambato zone appears to act as a N-S restraining bend in a system of large right-lateral strike-slip faults. The compressive deformation which affects the Interandean Depression during the Pliocene is apparently coeval to the beginning subduction of very young oceanic lithosphere north of the Gulf of Guayaquil. The relatively buoyant new crust may have significantly increased the mechanical coupling in the subduction zone from Pliocene to Present.  相似文献   

10.
Scaling relationships between seismic moment, rupture length, and rupture width have been examined. For this purpose, the data from several previous studies have been merged into a database containing more than 550 events. For large earthquakes, a dependence of scaling on faulting mechanism has been found. Whereas small and large dip-slip earthquakes scale in the same way, the self-similarity of earthquakes breaks down for large strike-slip events. Furthermore, no significant differences in scaling could be found between normal and reverse earthquakes and between earthquakes from different regions. Since the thickness of the seismogenic layer limits fault widths, most strike-slip earthquakes are limited to rupture widths of between 15 and 30 km while the rupture length is not limited. The aspect ratio of dip-slip earthquakes is similar for all earthquake sizes. Hence, the limitation in rupture width seems to control the maximum possible rupture length for these events. The different behaviour of strike-slip and dip-slip earthquakes can be explained by rupture dynamics and geological fault growth. If faults are segmented, with the thickness of the seismogenic layer controlling the length of each segment, strike-slip earthquakes might rupture connected segments more easily than dip-slip events, and thus could produce longer ruptures than dip-slip events of the same width  相似文献   

11.
We present a study on the impact of litho-structural setting and neotectonic activity on meso- and macro-scale relief production in Alpine areas. The topography of the high alpine Triglav Lakes Valley, NW Slovenia, was studied by means of detailed mapping and stratigraphic study of the valley. The Triglav Lakes Valley is characterised by a generally asymmetric transverse (E–W) profile: a very steep eastern slope, a relatively flat valley and a relatively gentle western slope. On the transverse profile the valley floor is essentially flat, gently dipping towards the east. In the longitudinal cross-section, however, the valley floor is marked by sharply-defined fault blocks extending in a W–E to NW–SE direction. Additionally, the highest block (elevations  2100 m) is in the northern part of the valley, the lowest (elevations  1600 m) in the southern part of the valley. Our research shows that the Triglav Lakes Valley directly represents the topographic expression of Paleogene–Neogene thrusting and faulting, having recorded the following geomorphologic evolutionary stages: 1. an Oligocene to early Miocene W-vergent thrusting phase, with steep W-facing slopes of the eastern part of the valley directly representing the thrusting front; and 2. a Neogene-to-present strike–slip faulting in NNE–SSW direction with two bifurcating right-lateral strike–slip systems. We show that the Triglav Lakes Valley almost perfectly mimics the wedge-shaped damage zone located between these faults.  相似文献   

12.
The Gulf of Corinth is one of the most active extensional regions in the Mediterranean area characterized by a high rate of seismicity. However, there are still open questions concerning the role and the geometry of the numerous active faults bordering the basin, as well as the mechanisms governing the seismicity. In this paper, we use a 2-D plane strain finite element analysis to constrain the upper crust rheology by modelling the available deformation data (GPS and geomorphology). We consider a SSW–NNE cross-section of the rift cutting the main active normal faults (Aigion, West Eliki and Off-Shore faults). The models run for 650 Kyr assuming an elasto-viscoplastic rheology and 1.3 cm yr−1 horizontal extension as boundary condition (resulting from GPS data). We model the horizontal and vertical deformation rates and the accumulation of plastic strain at depth, and we compare them with GPS data, with long term uplift rates inferred from geomorphology and with the distribution of seismicity, respectively. Our modelling results demonstrate that dislocation on high-angle normal faults in a plastic crustal layer plays a key role in explaining the extremely localized strain within the Gulf of Corinth. Conversely, the contribution of structures such as the antithetic Trizonia fault or the buried hypothetical subhorizontal discontinuity are not necessary to model observed data.  相似文献   

13.
About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.  相似文献   

14.
Fluid storage systems, such as oil, gas, magma or water reservoirs, are often controlled by the host rock structure and faulted terrain. In sedimentary basins, where no direct information about underlying structure is available, the pattern of ground deformation may allow us to assess the buried fault arrangement. We provide an example in the semi-arid area of Iran, in the Kashmar Valley, a region subject to land subsidence due to water overexploitation. Geodetically determined subsidence rates in the Kashmar Valley exceed 15–30 cm yr−1. The pattern of surface deformation is strongly non-uniform and displays NE–SW elongated bowls of subsidence. The trend resembles old Cretaceous-to-Tertiary faults that evolved during early alpine tectonic deformation. Although these early alpine structures are considered tectonically inactive in the present day, the observed land subsidence pattern indicates significant structural control on the geometry of the aquifer basin and its deformation during reservoir drainage.  相似文献   

15.
Summary. Earthquake deformations and induced sedimentary structures preserved in Quaternary sediments include faults, folds, fissures, slumps, sand boils and other effects of liquefaction. Such deformations and structures are well preserved in the Lisan deposits of the Dead Sea. Of most importance are the fold-type deformations known as décollement structures which are present all along the eastern side of the Lisan and seem to decrease gradually westwards to disappear in the middle of the Lisan. These may indicate that palaeoearthquakes originating along the Araba fault have triggered such structures due to shaking of elastoplastic unconsolidated sediments over gentle slopes dipping to the west.
Preliminary results from studies on décollement structures preserved in a section representing some 1733 years of continuous deposition in the uppermost? Pleistocene, in the vicinity of Wadi Araba, indicate that: (1) seismic activity has fluctuated with time. Average recurrence period is about 340 ± 20yr for earthquakes with magnitudes greater than or equal to 6.5, Earthquakes with magnitude greater than 7 seem to have occurred along the Araba fault. (2) Deduced earthquake magnitudes conform to the frequency–magnitude relationship: log N = 5.24–0.68 M . (3) The deduced seismic slip rate along the Araba fault seems to be not less than 0.64 ± 0.04 cm yr−1.  相似文献   

16.
The Kunlun fault is one of the largest strike-slip faults in northern Tibet, China. In this paper, we focus upon the Kusai Lake–Kunlun Pass segment of the fault to understand the geomorphic development of offset streams caused by repeated large seismic events, based on tectono-geomorphic analysis of high-resolution satellite remote sensing images combined with field studies. The results indicate that systematic left-lateral stream offsets appear at various scales across the fault zone: Lateral offsets of small gullies caused by the 2001 Mw 7.8 Kunlun earthquake vary typically from 3 m to 6 m, meanwhile streams with cumulative offsets of 10 m, 25–30 m, 50–70 m, 250–300 m and 750–1400 m have resulted from repeated large seismic events during the late Quaternary. An average slip rate of 10 ± 1 mm/year has been estimated from the lateral stream offsets and 14C ages of alluvial fan surfaces incised by the streams. A three-dimensional model showing tectono-geomorphic features along a left-lateral strike-slip fault is also presented. The Kusai Lake–Kunlun Pass segment provides an opportunity to understand the relationship between geomorphic features produced by individual large seismic events and long-term geomorphic development caused by repeated large seismic events along a major strike-slip fault.  相似文献   

17.
The M w 7.6 1997 Manyi earthquake occurred in an area of central northern Tibet where sparse vegetation coverage and a lack of human habitation provide excellent conditions for Interferometric Synthetic Aperture Radar (InSAR) studies. We use coseismic pairs of radar images acquired by the ESA ERS-2 satellite to construct interferograms of the surface displacement field due to the earthquake. The location and extent of the coseismic fault rupture are mapped using a combination of optical satellite imagery, high-resolution digital topography, interferometric correlation and azimuth offset measurements; in so doing, we are able to relate prominent geomorphic features in the fault zone to bends in the fault.
Using elastic dislocation models consistent with this mapped fault trace, we then test a range of fault geometries and slip conditions to find the combination which best explains the InSAR displacements. Our favoured model contains a reversal in fault dip, approximately halfway along its length, occurring at the location of a restraining bend. Slip on this model fault is heterogeneous, with two areas of peak slip of 7 m or greater, and components of dip-slip displacement which vary significantly along-strike. The success of this model in fitting the data implies that an observed asymmetry in the coseismic interferograms can be explained in terms of the local fault geometry, rather than by using non-linear elastic rheologies as suggested by earlier authors.  相似文献   

18.
Microseismicity at the boundary between two segments of the Büyük Menderes active normal fault zone, western Turkey, was monitored for two weeks during 1990 April and May, using a dense network of six portable seismographs with spacing ∼1–2 km. Extension rate across this fault zone is investigated by three independent methods; our preferred estimate is 1.2 ± 0.4 mm yr−1. The area contains a geothermal field, but microseismicity appears unrelated to geothermal well positions and was thus lower than expected; six local events were recorded, none larger than magnitude 2. Microearthquakes in this size range contribute negligibly to local tectonic deformation. However, frequency of occurrence of these and local magnitude 7 events both satisfy the standard Gutenberg-Richter relationship. The local geomorphology includes an example of river capture associated with elevation changes accompanying changing patterns of slip on individual fault segments, which appears to have occurred less than 1 Myr ago.  相似文献   

19.
The Dien Bien Phu fault zone (DBP), orientated NNE to N, is one of the most seismically active zones in Indochina. In NW Vietnam, this zone is 160 km long and 6–10 km wide, cutting sedimentary and metamorphic rocks of the Late Proterozoic, Palaeozoic and Mesozoic age, as well as Palaeozoic and Late Triassic granitoids. Along the DBP relatively small, narrow pull-apart basins occur, the three largest of which (Chan Nua, Lai Chau and Dien Bien Phu) have been studied in detail. All of them are bounded by sinistral and sinistral-normal faults, responsible for offset and deflected drainage, presence of numerous shutter ridges and displaced terraces and alluvial fans. The normal component of motion is testified to by well-preserved triangular facets on fault scarps, highly elevated straths in river watergaps, overhanging tributary valleys, as well as high and uneven river-bed gradients.Our observations indicate a minimum recent sinistral offset ranging from 6–8 to 150 m for Holocene valleys to 1.2–9.75 km for middle–late Pleistocene valleys in different fault segments. The thickness of Quaternary sediments varies from 5–25 m in the Lai Chau area to some 130 m in the Dien Bien Phu Basin. In the Lai Chau Basin, the middle terrace (23 m) alluvia of Nam Na River at Muong Te bridge have been optically stimulated luminescence/single aliquot regenerative dose technique (OSL-SAR) dated at 23–40 to 13 ka. These sediments were normal-faulted by some 11 m after 13 ka, and mantled by vari-coloured slope loams, 8–12 m thick, containing colluvial wedges composed of angular debris. These wedges were probably formed due to at least three palaeoseismic events postdating 6 ka. In the Dien Bien Phu Basin, in turn, alluvium of the upper Holocene terraces has been OSL-SAR dated to 6.5–7 and 1.7–1.0 ka, whereas the younger (sub-recent) terrace sediments give ages of 0.5–0.2 ka.Displaced terraces and alluvial fans allow us to suppose that the sinistral and sinistral-normal faults bounding narrow pull-apart basins in the southern portion of the DBP fault reveal minimum rates of left-lateral strike-slip ranging from 0.6 to 2 mm/year in Holocene and 0.5–3.8 mm/year in Pleistocene times, whereas rates of Holocene uplift tend to attain 1 mm/year north of Lai Chau and 0.4–0.6 mm/year west of Dien Bien Phu. More precise estimations, however, are difficult to obtain due to poor age control of the displaced drainage. Rates of Quaternary strike-slip are comparable with those of the Red River fault; the sense of movement being, however, opposite. Taking into account the presence of two phases of Late Cenozoic strike-slip of contrasting sense of motion, as well as the geometry of the two fault zones, we hypothesize that the Red River and Dien Bien Phu faults are conjugate faults capable of generating relatively strong earthquakes in the future.  相似文献   

20.
We present geological and morphological data, combined with an analysis of seismic reflection lines across the Ionian offshore zone and information on historical earthquakes, in order to yield new constraints on active faulting in southeastern Sicily. This region, one of the most seismically active of the Mediterranean, is affected by WNW–ESE regional extension producing normal faulting of the southern edge of the Siculo–Calabrian rift zone. Our data describe two systems of Quaternary normal faults, characterized by different ages and related to distinct tectonic processes. The older NW–SE-trending normal fault segments developed up to ≈400  kyr ago and, striking perpendicular to the main front of the Maghrebian thrust belt, bound the small basins occurring along the eastern coast of the Hyblean Plateau. The younger fault system is represented by prominent NNW–SSE-trending normal fault segments and extends along the Ionian offshore zone following the NE–SW-trending Avola and Rosolini–Ispica normal faults. These faults are characterized by vertical slip rates of 0.7–3.3  mm  yr −1 and might be associated with the large seismic events of January 1693. We suggest that the main shock of the January 1693 earthquakes ( M ~ 7) could be related to a 45  km long normal fault with a right-lateral component of motion. A long-term net slip rate of about 3.7  mm  yr −1 is calculated, and a recurrence interval of about 550 ± 50  yr is proposed for large events similar to that of January 1693.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号