首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Atmospheric Research》2007,83(3-4):605-609
This article presents the results of an experimental investigation on gas-phase coating of nanometer-sized NaCl aerosol particles with a condensing vapor of ZnCl2. The coating process has been carried out in a commercially available Venturi aspirator, where the NaCl at ambient temperature is mixed with the supersaturated ZnCl2 vapor. The operating conditions (ZnC12 vapor temperature, and ZnCl2/NaCl flow rate ratio) at which the ZnCl2 vapor preferentially nucleates onto the surface of the seed NaCl particles forming a coating layer on them, have been determined. Particle size growth as a function of the original seed diameter has also been determined. Smaller particles undergo a larger relative size growth ratio. It has also been shown that the presence of a coating layer does not affect the charge distribution of the original seed particles.  相似文献   

2.
《Atmospheric Research》2009,91(2-4):187-194
Heterogeneous nucleation of supersaturated n-nonane vapour on seed particles of different size and composition has been investigated using a fast expansion chamber. Monodisperse seed particle sizes were ranging from about 4 nm up to about 24 nm in diameter. By using different types of particle generators WOx, Ag and (NH4)2SO4 particles were generated. For direct comparison between different particle compositions overlapping sizes have been generated for WOx and Ag at about 7 nm particle diameter as well as for Ag and (NH4)2SO4 at about 15 nm. Nucleation temperature was kept constant at about 278 K. Experimental data were compared to Kelvin equation and Fletcher theory including the effect of line tension. It was found that heterogeneous nucleation of n-nonane seems to be independent of seed particle composition and starts well below the Kelvin curve. Good agreement was achieved with Fletcher theory including the effect of line tension.  相似文献   

3.
Heterogeneous nucleation of supersaturated n-nonane vapour on seed particles of different size and composition has been investigated using a fast expansion chamber. Monodisperse seed particle sizes were ranging from about 4 nm up to about 24 nm in diameter. By using different types of particle generators WOx, Ag and (NH4)2SO4 particles were generated. For direct comparison between different particle compositions overlapping sizes have been generated for WOx and Ag at about 7 nm particle diameter as well as for Ag and (NH4)2SO4 at about 15 nm. Nucleation temperature was kept constant at about 278 K. Experimental data were compared to Kelvin equation and Fletcher theory including the effect of line tension. It was found that heterogeneous nucleation of n-nonane seems to be independent of seed particle composition and starts well below the Kelvin curve. Good agreement was achieved with Fletcher theory including the effect of line tension.  相似文献   

4.
The Bowen-ratio profile method for calculating total carbon dioxide, latent heat, and sensible heat flux density above a corn crop was used by measuring temperature, water vapor, and CO2 concentrations at several heights in the aerodynamic boundary layer of the crop. The ratio (α) of sensible heat flux density to carbon dioxide flux density as well as the Bowen ratio (β) were used in the computations. The two ratios, α and β were determined graphically from the slopes of linear plots of temperature vs CO2 concentration and vs water vapor. Each of the energy flux densities was computed from the two ratios and net radiation minus soil heat flux density. An analysis of probable error was performed on the Bowen-ratio profile method to evaluate the accuracy of the flux density estimates. Less than 10% error was found for latent heat flux density and less than 15% for carbon dioxide flux density under normal midday conditions for the instrumentation used. However, the carbon dioxide flux density error increased to over 40% when the sensible heat flux was small.  相似文献   

5.
Ground-based aerosol instrumentation covering particle size diameters from 25 nm to 32 µm was deployed to determine aerosol concentration and cloud condensation nuclei (CCN)-activation properties at water vapor supersaturations in the range of S = 0.20–1.50 % in the remote Brazilian northeast semi-arid region (NEB) in coastal (maritime) and continental (inland) regimes. The instruments measured aerosol number concentration and activation spectra for CCN and revealed that aerosol properties are sensitive with respect to the sources as a function of the local wind circulation system. The observations show that coastal aerosol total number concentrations are above 3,000 cm?3 on average, exhibiting concentration peaks depending on the time of the day in a consistent daily pattern. The variation on aerosol concentration has also influences on the fraction of particles active as CCN. At 1.0 % water vapor supersaturation, the fraction can reach as high as 80 %. Inland aerosol total concentrations were about 1,800–1,900 cm?3 and did not show much diurnal variation. The fraction of particles active as CCN observed inland depend on the history of the air masses, and was much higher when air masses were originated over the sea. It was found that (NH4)2SO4 and NaCl are the major soluble inorganic fraction of the aerosols at the coast. The major fraction of NaCl was present in the coarse mode, while ammonium sulfate dominates the inorganic fraction at the submicron range, with about 10 % of the total aerosol mass at 0.32 µm. Inorganic compounds are almost absent in particles with sizes around 0.1 μm. The study suggests that the air masses with high concentration of CCN originate at the sea. The feasible explanation lies in the fact that the NEB’s beaches have a particular morphology that produces a wide surf zone and creates a large load of aerosols when combined with strong and permanent winds of the region.  相似文献   

6.
(NH4)2SO4, CaCl2, Na2SiO3 and NaNO3 were selected as surrogates of inorganic seed aerosols of ambient atmosphere of Chinese urban areas, respectively, to study their effects on the formation of secondary organic aerosol (SOA) in the toluene/CH3ONO/NOx photooxidation system. The SMPS and aerosol laser time-of-flight mass spectrometer (ALTOFMS) was used to measure the aerodynamic size and chemical composition of individual SOA particles in real-time. Experimental results indicate that either the growth or products of SOA is affected by the presence of inorganic seed aerosol. Inorganic seed aerosols would promote growth rates of SOA formation at the start of the reaction and inhibits its formation rate with prolonging the reaction time. In the case of about 100 μg m?3 seed aerosol load, the addition of Na2SiO3 induced a same growth rate of SOA formation as NaNO3. The influence of four individual seed aerosols on the generation of SOA decreased in the order of CaCl2 > (NH4)2SO4 > NaNO3, Na2SiO3. The presence of Na2SiO3 or NaNO3 has no obvious effect on the growth rates of SOA formation, but it does increase the yield of organic acid and nitrogen-containing organic compounds, respectively. Besides the significantly effect on the growth rate of SOA formation, the presence of CaCl2 or (NH4)2SO4 can lead to the formation of high-molecular weight species which is found to be positively correlated with the hygroscopic behavior of seed aerosols. The CaCl2 shows the strongest hygroscopic behavior among the four individual seed aerosols, and the most significant promotion effect on the formation of the high-molecular weight species. It is proposed that the SOA generation enhancement and high-molecular weight products are achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of CaCl2 and (NH4)2SO4 seed aerosols.  相似文献   

7.
Spectra of CO2 and water vapour fluctuations from measurements made in the marine atmospheric surface layer have been analyzed. A normalization of spectra based on Monin–Obukhov similarity theory, originally developed for wind speed and temperature, has been successfully extended also to CO2 and humidity spectra. The normalized CO2 spectra were observed to have somewhat larger contributions from low frequencies compared to humidity spectra during unstable stratification. However, overall, the CO2 and humidity spectra showed good agreement as did the cospectra of vertical velocity with water vapour and CO2 respectively. During stable stratification the spectra and cospectra displayed a well-defined spectral gap separating the mesoscale and small-scale turbulent fluctuations. Two-dimensional turbulence was suggested as a possible source for the mesoscale fluctuations, which in combination with wave activity in the vertical wind is likely to explain the increase in the cospectral energy for the corresponding frequency range. Prior to the analysis the turbulence time series of the density measurements were converted to time series of mixing ratios relative to dry air. Some differences were observed when the spectra based on the original density measurements were compared to the spectra based on the mixing ratio time series. It is thus recommended to always convert the density time series to mixing ratio before performing spectral analysis.  相似文献   

8.
南京霾天颗粒物数浓度特征及其受气象条件影响分析   总被引:5,自引:3,他引:2  
2013年12月,我国中东部地区爆发持续性霾污染过程。本研究利用空气动力学粒径谱仪和气溶胶粒径谱仪在线观测这次霾污染过程中13.6~20 000 nm颗粒物数浓度,结合气象参数和颗粒物化学组分对南京霾天颗粒物数浓度分布特征,及其与气象条件相关性进行分析。结果表明,霾天颗粒物主要分布在积聚模态,且500~1 000 nm和1 000~2 500 nm粒径段颗粒物数浓度的增多是造成霾天能见度低的主要原因;随着相对湿度的增大,13.6~100 nm粒径段颗粒物数浓度逐渐降低,而大于100 nm颗粒物数浓度升高;500~1 000 nm和1 000~2 500 nm粒径段颗粒物数浓度受相对湿度的影响尤为明显,并且这2个粒径段颗粒物受气态污染物(SO2,NOX)的二次转化影响较大。霾污染期间南京大气颗粒物主要来自南京东南和西北方向的污染源排放,颗粒物数浓度总体上与风速呈负相关关系;温度对颗粒物数浓度的影响主要集中在13.6~100 nm粒径段;边界层的高度与粒径100 nm颗粒物呈负相关性,边界层的抬升反而利于超细粒子的生成和增长;逆温层的强度对超细粒子的作用更为明显。  相似文献   

9.
Summary To investigate the effect of atmospheric turbulence on microwave communication links, temperature and water vapor pressure have been measured and radio refractivity has been computed, during different meteorological conditions, in the atmospheric boundary layer of an urban site. The cospectra between temperature (T) and water vapor pressure (e) have been found to be either negative over the whole range of frequencies, or the low-frequency end of the cospectrum is of opposite sign relative to higher frequency end. In both cases cospectra follow a–5/3 law in the inertial subrange, in agreement with the theoretical predictions. The coherence spectra clearly show that the temperature and humidity fluctuations are highly coherent within the inertial subrange under both convective and stable conditions. The relative contribution ofC T 2 ,C eT andC e 2 to the real refractive index structure parameterC n 2 is examined and discussed.With 4 Figures  相似文献   

10.
利用星载微波临边遥感探测结果,对2006年6月28~29日江淮地区的一次强对流天气过程中对流层上部一氧化碳 (CO) 、臭氧 (O3) 、水汽 (H2O) 和冰水含量 (IWC) 的分布特点进行了研究.强对流天气过程前后的对比分析表明,CO混合比增大,在200 hPa处增加了0.12 ppm (1 ppm=10-6);O3混合比减小,在70 hPa处减少了0.30 ppm;H2O混合比在250 hPa处增加了400 ppm;IWC在强降水发生之前有大幅增长,在200 hPa处最大含量可达0.03 g/m3.CO和O3含量与垂直运动速度两者的相关变化表明,对流垂直输送作用可能是造成对流层上层和平流层低层大气成分变化的机制之一.而H2O和IWC含量的增加主要局限于对流层顶以下,这表明对流层上部水物质的质量和形态是由垂直输送作用和对流系统内部的微物理过程共同决定的.  相似文献   

11.
为全面了解水汽在气溶胶影响雷暴云电过程中的作用,本研究在已有的二维雷暴云起、放电模式基础上,通过改变相对湿度和气溶胶初始浓度(文中气溶胶浓度均指气溶胶数浓度)进行敏感性数值模拟试验.结果表明:(1)随着气溶胶浓度升高,雷暴云产生更多的小云滴,降水过程受到抑制.而当水汽含量升高时,云滴数浓度的增长速度更快,雨滴数浓度升高...  相似文献   

12.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

13.
A box model of DMS oxidation in the clean, low-NO x marine atmospheric boundary layer has been used to predict the latitude dependence of the aerosol methanesulfonate to non sea-salt sulfate ratio. The observed latitude dependence of this ratio in the Southern Hemisphere can be reproduced reasonably well if the full suite of reactions proposed by Yin et al. (1990a) is employed, and a strong temperature dependence is specified in the rates of decomposition of CH3SO2 and CH3SO3 radicals.  相似文献   

14.
The uptake of water vapor on MgCl2×6H2O and NaCl salt dry solid films was studied over the temperature range 240 to 340 K and at 1 Torr pressure of helium using a flow reactor coupled to a modulated molecular beam mass spectrometer. The H2O to salt uptake data were obtained from the kinetics of H2O loss on salt coated Pyrex rods. The following Arrhenius expression was obtained for the initial uptake coefficient of H2O on MgCl2×6H2O films: γ 0 (MgCl2) = (6.5 ± 1.0) × 10−6 exp[(470 ± 40)/T] (calculated with specific BET surface area, quoted uncertainties are 1σ statistical). The rate of H2O adsorption on NaCl was found to be much lower than on MgCl2×6H2O, and only an upper limit was determined for the corresponding uptake coefficient: γ (NaCl) ≤ 5.6 × 10−6 at T = 300 K. The results show that the rate of H2O adsorption to salt surfaces is drastically dependent on the salt sample composition.  相似文献   

15.
A box model was constructed to investigate connections between the particulate MSA to non-sea-salt sulfate ratio, R, and DMS chemistry in a clean marine boundary layer. The simulations demonstrated that R varies widely with particle size, which must be taken into account when interpreting field measurements or comparing them with each other. In addition to DMS gas-phase chemistry, R in the submicron size range was shown to be sensitive to the factors dictating sulfate production via cloud processing, to the removal of SO2 from the boundary layer by dry deposition and sea-salt oxidation, to the entrainment of SO2 from the free troposphere, to the relative concentration of sub- and supermicron particles, and to meteorology. Three potential explanations for the increase of R toward high-latitudes during the summer were found: larger MSA yields from DMS oxidation at high latitudes, larger DMSO yields from DMS oxidation followed by the conversion of DMSO to MSA at high latitudes, or lower ambient H2O2 concentrations at high latitudes leading to less efficient sulfate production in clouds. Possible reasons for the large seasonal amplitude of R at mid and high latitudes include seasonal changes in the partitioning of DMS oxidation to the OH and NO3 initiated pathways, seasonal changes in the concentration of species participating the DMS-OH reaction pathway, or the existence of a SO2 source other than DMS oxidation in the marine boundary layer. Even small anthropogenic perturbations were shown to have a potential to alter the MSA to non-sea-salt sulfate ratio.  相似文献   

16.
A change in CO2 concentration induces a direct radiative forcing that modifies the planetary thermodynamic state, and hence the surface temperature. The infrared cooling, by assuming a constant temperature lapse-rate during the process, will be related to the surface temperature through the Stefan–Boltzmann law in a ratio proportional to the new infrared opacity. Other indirect effects, such as the water vapor and ice-albedo feedbacks, may amplify the system response. In the present paper, we address the question of how a global climate model with a mixed layer ocean responds to different rates of change of a well-mixed greenhouse gas such as CO2. We provide evidence that different rates of CO2 variation may lead to similar transient climates characterized by the same global mean surface temperature but different values of CO2 concentration. Moreover, it is shown that, far from the bifurcation points, the model’s climate depends on the history of the radiative forcing displaying a hysteresis cycle that is neither static nor dynamical, but is related to the memory response of the model. Results are supported by the solutions of a zero-dimensional energy balance model.  相似文献   

17.
The growth of critical clusters is discussed in the paper according to the classical and molecular dynamics (MD) approaches. A new formula for molecule numbers in critical clusters has been derived within the framework of the classical approach. A set of equations controlling the early stage of growth in a neighborhood of a critical size is presented. As far as molecular dynamics simulation is concerned, a computational technique based on the DL_POLY code is described in brief. Computation results are presented concerning cluster formation of H2O vapor, distribution of clusters versus time, cluster growth and radial density distribution of isolated clusters. A comparison with the classical results is made for a case of dense vapor, where the mechanism of strong condensation is predominant. The Hertz–Knudsen formula seems to be verified by the molecular dynamics results.  相似文献   

18.
为了揭示深对流云直接向平流层输送水汽的物理机制,利用WRF中尺度模式的理想个例运行方式对CCOPE(Cooperative Convective Precipitation Experiment)试验期间的一次超级单体进行了数值模拟。选用Thompson云微物理过程方案设置一系列初始云滴数浓度(N_c)进行模拟试验后发现,N_c=175 cm~(-3)情形下模拟云的最大垂直风速与实测结果最为接近,并且模拟出了超级单体。因此,本文利用该模拟结果分析了超级单体向平流层输送水汽的机制。1 min一次的输出结果表明:冻干脱水机制与本次所模拟出的平流层加湿没有直接的关系,超级单体向平流层输送水汽的主要机制可能为湍流输送机制,而升华加湿机制的作用很小。这是由于超级单体云上部的冰晶大部分被消耗而形成雪,因此被输送到平流层的主要是雪这种落速较大粒子,这种粒子不易被向上输送但又容易降落,因此升华所形成的水汽量相比湍流输送的水汽量小很多。湍流造成的水汽输送通量密度的量级约为10~(-9)kg·m~2·s~(-1)。  相似文献   

19.
《Atmospheric Research》2007,83(3-4):465-480
The growth of critical clusters is discussed in the paper according to the classical and molecular dynamics (MD) approaches. A new formula for molecule numbers in critical clusters has been derived within the framework of the classical approach. A set of equations controlling the early stage of growth in a neighborhood of a critical size is presented. As far as molecular dynamics simulation is concerned, a computational technique based on the DL_POLY code is described in brief. Computation results are presented concerning cluster formation of H2O vapor, distribution of clusters versus time, cluster growth and radial density distribution of isolated clusters. A comparison with the classical results is made for a case of dense vapor, where the mechanism of strong condensation is predominant. The Hertz–Knudsen formula seems to be verified by the molecular dynamics results.  相似文献   

20.
冰云是影响气候变化最为重要的因子之一,其生命周期的变化在很大程度上决定了冰云的气候辐射效应。冰云粒子下降末速度是影响冰云生命周期的关键参数。为了开展对冰云粒子下降末速度的研究,利用兰州大学半干旱气候与环境监测站Ka波段毫米波云雷达2013年8月至2015年7月连续观测数据,反演了冰云粒子的下降末速度(Vt),并根据雷达反射率因子(Z)与Vt的关系计算了拟合因子a、b的值;在此基础上应用聚类分析方法,对比分析了4种不同特性冰云Z、Vt和拟合因子a、b的时、空分布特征,进而尝试通过参数垂直分布特征识别研究云中不同位置上云微物理过程的变化。结果表明:冰云粒子下降末速度的分布与雷达反射率因子有很好的对应,最大频率都出现在距离地面约7 km高度处,且具有显著的季节变化,粒子下降末速度在暖季较冷季可增大25%,峰值出现在6月和9月;云层较厚且持续时间长的第一、三类冰云,其雷达反射率因子、粒子下降末速度及拟合因子a和b的平均值都显著大于云层较薄且持续时间短的第二、四类云。垂直方向上,Z、Vt和拟合因子b从云顶到云底随着高度的降低呈现先增大后减小的趋势,体现了云粒子在云顶区域成核和水汽凝华效应,随着粒子在下落过程中碰并增长,云滴粒子逐渐增大,水汽的凝华和粒子的聚合起主要作用,最后在云底部分,云粒子蒸发、升华减小消亡的过程。由此表明中纬度干旱半干旱地区冰云是从云顶到云底自上而下的形成过程。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号