首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
针对被保护结构下埋置波阻板的远场被动隔振问题,采用频域弹性边界元法,推导得到了弹性地基中波阻板对入射Rayleigh波散射的边界元方程,在此基础上对波阻板的远场被动隔振效果进行了计算,并对影响波阻板隔振效果的因素进行了分析。研究结果表明:在地基一定深度设置波阻板能够有效降低波阻板上方及后方区域的地面振动;减小波阻板埋深以及增大波阻板厚度均能获得更好的隔振效果;而增加波阻板的剪切模量是提高波阻板被动隔振效果的最有效措施。  相似文献   

2.
二维地基波阻板隔振分析   总被引:5,自引:0,他引:5  
本文采用了以薄层法层状半空间基本解答作为格林函数的边界元法,对均质弹性半空间和层状半空间中二维波阻板隔振设计进行了详细的参数分析。分析结果表明,均质弹性半空间和层状半空间内采用波阻板隔振均可取得较好的隔振效果;应保证波阻板具有合理的宽度和较小的埋深,才能得到理想的隔振效果;同时增加波阻板的厚度和模量是提高隔振效果的最有效的2种措施;此外,分层性对波阻板隔振效果也具有一定的影响。  相似文献   

3.
城市轨道交通快速便捷的同时,地铁运行产生的环境振动问题也日益突出。Duxseal作为一种工业填料,具有良好的阻尼性能并能吸收振动反射能,将其运用到地铁隔振中,提出一种带孔波阻板填充Duxseal(DXWIB)的隔振方法。通过建立三维ABAQUS有限元模型,对比分析波阻板(WIB)、蜂窝状波阻板(HWIB)和DXWIB的隔振效果,讨论DXWIB埋置深度及厚度对隔振效果的影响,并分析基床表层和地面的振动规律。计算结果表明:DXWIB的隔振效果最优,而WIB与HWIB的隔振效果相近;DXWIB在埋深0.5 m厚度0.8 m时隔振效果最佳;基床表层的振动规律表现为由振源向两侧横向传播中,加速度整体呈衰减趋势,而在地面传播过程中,加速度峰值呈先增大后减小再增大的趋势,在距轨道中轴线20 m和50 m处出现局部放大效应。  相似文献   

4.
This paper presents a comparison between measured train-induced ground vibrations in the free-field before and after countermeasures had been taken at Kåhög near Gothenburg in Sweden. A wave barrier of lime–cement columns was constructed parallel to the railway in order to reduce the ground-borne vibrations inside nearby buildings. On top of the barrier an embankment was built to reduce air-borne vibrations. Due to the wave barrier design, part of the energy content of the waves was expected to be reflected by the screen and transmitted energy was expected to be partly scattered. Contribution from the noise-embankment was not thought likely but could not be ruled out due to its fairly large mass and its close proximity to the railway. The effect of the mitigating measures resulted in a 67% reduction of the maximum particle velocity at 30 m and 41% at 60 m from the railway. A simple two-dimensional finite element model has been used to study the relative importance of the wave barrier and the noise-embankment as contributors to the mitigation recorded of the ground vibrations in the field. It is concluded with respect to ground vibrations that both the barrier and the embankment had a mitigating effect but that the contribution from the barrier dominated. Furthermore, it is seen from the field results as well as the simulation that the effect of the mitigating action is reduced with increasing distance from the railway.  相似文献   

5.
This paper discusses the design, the installation, and the experimental and numerical evaluation of the effectiveness of a stiff wave barrier in the soil as a mitigation measure for railway induced vibrations. A full scale in situ experiment has been conducted at a site in El Realengo (Spain), where a barrier consisting of overlapping jet grout columns has been installed along a railway track. This barrier is stiff compared to the soil and has a depth of 7.5 m, a width of 1 m, and a length of 55 m. Geophysical tests have been performed prior to the installation of the barrier for the determination of the dynamic soil characteristics. Extensive measurements have been carried out before and after installation of the barrier, including free field vibrations during train passages, transfer functions between the track and the free field, and the track receptance. Measurements have also been performed at a reference section adjacent to the test section in order to verify the effect of changing train, track, and soil conditions over time. The in situ measurements show that the barrier is very effective: during train passages, a reduction of vibration levels by 5 dB is already obtained from 8 Hz upwards, while a peak reduction of about 12 dB is observed near 30 Hz immediately behind the barrier. The performance decreases further away from the jet grouting wall, but remains significant. The experimental results are also compared to numerical simulations based on a coupled finite element–boundary element methodology. A reasonable agreement between experiments and predictions is found, largely confirming the initially predicted reduction. This in situ test hence serves as a ‘proof of concept׳, demonstrating that stiff wave barriers are capable of significantly reducing vibration levels, provided that they are properly designed.  相似文献   

6.
In this paper, the obtained results from the experimental studies describe the basic characteristics of wave propagation and ability of possible measures to reduce the impact of soil vibrations on structural response for both active and passive isolation cases. A series of field tests on the foundation vibrations generated by electrodynamic shaker are performed to examine the screening efficiency of open and in-filled trench barriers which are constructed for full-scale measurement. From field measurements of amplitude with and without the barrier, the amplitude reduction ratio is estimated at different points of interest. Wave propagating characteristics and frequency-dependent screening effects of the wave barriers are investigated according to various isolation material stiffnesses. The remarkable outcomes from these experimental studies can be briefly generalized as follows: backfilled trench with softer material than soil is more effective for the passive isolation than the active one. The reduction effects of wave barriers depend on the frequency of vibration source for both passive and active isolation cases. In-situ measurements confirm that vibration screening systems using open or in-filled trench barriers can be applied as a reduction measure for soil vibrations due to a moving load which is considered as stationary wave source in this problem.  相似文献   

7.
Ground vibrations induced by machine foundations can cause unfavourable effects on the nearby buildings ranging from annoyance to structural damage. Most of these vibrations propagate in the form of surface (Rayleigh) waves. Machine foundations produce a steady state vibration, for which, wave barriers can be a successful technique to minimize these effects by scattering the generated steady state surface waves. A full scale field experimental study has been conducted to investigate the protective performance of both open and in-filled trench with GeoFoam material as well as to examine the influences of wall geometry and location from the vibratory source on the isolation efficiency. An innovative approach to construct GeoFoam trench as a wave barrier is proposed in this study as well. The results of the field experimental investigations are analyzed and interpreted to provide recommendations for implementation in design. Experimental results show that both open and GeoFoam barriers can effectively reduce the transmitted waves. The field experimental results have been compared with those obtained from the developed numerical model using a finite element package, ABAQUS.  相似文献   

8.
Ground vibrations generated by construction activities can adversely affect the structural health of adjacent buildings and foundations supporting them. Therefore propagation and rate of attenuation of construction induced ground vibrations is important during construction activities, particularly in urban areas where constructions are carried out in the vicinity of existing structures. In practice wave barriers are installed in the ground to mitigate the ground vibration propagation and hence to minimise the effect of ground vibrations on surrounding structures. Different types of fill materials such as bentonite, EPS geofoam and concrete are used in constructing wave barriers. In this study, a three-dimensional finite element model is developed to study the efficiency of different fill materials in attenuating ground vibrations. The model is first verified using data from full scale field experiments, where EPS geofoam has been used as a fill material in wave barriers. Then the same model has been used to evaluate the efficiency of open trenches, water filled wave barriers and EPS geofoam filled wave barriers on attenuation of ground vibrations. EPS geofoam is found to be the most efficient fill material, providing attenuation efficiency closer to open trenches. The efficiency of EPS geofoam and water filled wave barriers can be significantly increased by increasing the depth of the wave barrier.  相似文献   

9.
为研究高速铁路路堤中WIB(波阻板)的减隔振效果,构建了简易的铁路路堤原理性试验模型,获得了在WIB底面与路堤顶面垂直间距不同时、在路堤面上的简谐荷载作用下引起的振动波在模型表面的传播衰减规律,分析了铁路路基中WIB底面与路堤顶面垂直间距不同时的减隔振效果;构建了高速铁路路基三维动力数值仿真分析模型,并进行对比分析,验证了模型试验的合理性。结果表明:在高速铁路路堤的基床底层中设置WIB,越靠近路堤顶面,减隔振效果越好;在基床底层的顶面设置WIB的减隔振效果优于在基床表层设置WIB。  相似文献   

10.
Traditional Boussinesq or kinematic simulations of interflow (i.e., lateral subsurface flow) assume no leakage through the impeding layer and require a no-flow boundary condition at the ridge top. However, recent analyses of many interflow-producing landscapes indicate that leaky impeding layers are common, that most interflow percolates well before reaching the toe slope, and therefore, the downslope contributing length is shorter than the hillslope length. In watersheds characterised by perched interflow over a low conductivity layer through permeable topsoil, interflow with percolation may be modelled with a kinematic wave model using a mobile upslope boundary condition defining the hillslope portion contributing interflow to valleys. Here, we developed and applied a dynamic interflow model to simulate interflow using a downslope travel distance concept such that only the active contributing length is modelled at any time. The model defines a variable active area based on the depth of the perched layer, the topographic slope and the ratio of the hydraulic conductivity of topsoil to that of the impeding layer. It incorporates a two-layer soil moisture accounting water balance analysis, a pedo-transfer function, and percolation and evaporation routines to predict interflow rates in continuous and event-based scenarios. We tested the modelling concept on two sets of data (2-year dataset of rainfall observations for the continuous simulation and a multi-day irrigation experiment for the event simulation) from a 121-m-long open interflow collection trench on an experimental hillslope at the Savannah River Site, South Carolina. The continuous model simulation partially represented the observed interflow hydrograph and perched water depth in the experimental hillslope with correlation coefficients of 0.85 and 0.35, respectively. Model performance improved significantly at event-scale analysis. The modelling approach realistically represents interflow dynamics in hillslopes with leaky impeding layers and can be integrated into catchment-scale hydrology models for more detailed hillslope process modelling.  相似文献   

11.
In this paper, a series of field experiments were carried out to investigate the active vibration isolation for a surface foundation using horizontal wave impedance block (WIB) in a multilayered ground under vertical excitations. The velocity amplitude of ground vibration was measured and the root-mean-square (RMS) velocity is used to evaluate the vibration mitigation effect of the WIB. The influences of the size, the embedded depth and the shear modulus of the WIB on the vibration mitigation were also systematically examined under different loading conditions. The experimental results convincingly indicate that WIB is effective to reduce the ground vibration, especially at high excitation frequencies. The vibration mitigation effect of the WIB would be improved when its size and shear modulus increase or the embedded depth decreases. The results also showed that the WIB may amplify rather than reduce the ground vibration when its shear modulus is smaller or the embedded depth is larger than a threshold value. Meanwhile, an improved 3D semi-analytical boundary element method (BEM) combined with a thin layer method (TLM) was proposed to account for the rectangular shape of the used WIB and the laminated characteristics of the actual ground condition in analyzing the vibration mitigation of machine foundations. Comparisons between the field experiments and the numerical analyses were also made to validate the proposed BEM.  相似文献   

12.
Reduction in traffic-induced ground vibrations by the use of shaped landscapes is investigated here by shaping the landscape surrounding a high-tech facility, using the landscape thus produced as a wave obstacle. The effects of the geometric parameters of a shaped landscape were examined in parametric studies. An architectural landscape design was also investigated in terms of its effectiveness in reducing traffic-induced ground vibrations. Finite element models, analysed in the frequency domain, were employed. The models involve a layer of soil and the underlying bedrock. It was found that anywhere from an appreciable reduction to an appreciable amplification of the vibrations produced can occur, depending upon the geometric parameters of the shaped landscape involved. The most effective shape was found for a topography that acted as a waveguide that reduced the level of vibration by approximately 35%.  相似文献   

13.
Train viaduct behavior and nearby ground motion under the high-speed train passage have been studied in this paper. First, the findings from the field measurement alongside the high-speed Shinkansen railway in Japan are interpreted. Then, the computer simulation is made based on the soil-foundation-viaduct interaction analysis under moving axle loads. The solution method is to apply the dynamic substructure method in the frequency domain. The viaduct girders including track structure and pier supports are modeled by the three-dimensional beam-column elements. The supporting pile foundation and nearby field are discretized by the axisymmetric three-dimensional finite elements and analyzed in a semi-analytical way, with a transmitting boundary replacing the far field based on the thin layer element method. Nearby ground motion during train passage on a viaduct have been calculated by superimposing the effects from neighboring pile foundations.The main parameters affecting viaduct vibrations are discussed by taking environmental vibration into consideration. The nearby ground motion along the viaduct is recomputed by applying the above determined forces to the foundation tops. The results from numerical studies are compared with the field test data, thus proving the present simulation to be effective and reliable.  相似文献   

14.
This study investigates the behavior of ground vibrations induced by trains moving on embankments using theoretical formulations, finite element analyses, and field experiments. The train-induced vibrations are large at the dominant frequencies of nV/Lc, even though the rail is very rough, where n is a positive integer, V is the train speed, and Lc is the carriage interval. For subsonic train speeds, the train-induced ground vibration is extremely small when the rail is perfectly smooth, but with a minor rail irregularity, the train-induced ground vibration can be significantly increased. However, for supersonic train speeds, the ground vibrations with or without rail irregularities are not very different, and the vibration of the first dominant frequency having the longest wavelength is the most obvious wave.  相似文献   

15.
动力机器运行和车辆行驶等会产生振动污染,危及邻近建筑物安全和干扰精密仪器设备正常运行等。这些振动污染可通过在地基中设置空沟的方式来降低或消除。针对饱和地基上明置动力机器基础的环境振动影响及空沟近场隔振问题,进行了饱和地基上空沟近场隔振的现场试验,并对试验结果进行了无量纲化分析;基于饱和土半解析边界元法,分别推导了动力机器基础环境振动影响和空沟近场隔振的边界元方程;在此基础上,详细研究了空沟对动力机器基础振动影响的隔振效果,分析了空沟深度、宽度和距振源距离对其隔振效果的影响。结果表明:空沟能够有效的降低动力机器基础的环境振动影响;空沟宽度对其隔振效果影响相对较小,而空沟深度对其隔振效果影响较大,为获得较好的隔振效果,空沟深度建议取1倍Rayleigh波波长;空沟距振源距离对其隔振效果也有较大影响,距离越远则隔振效果也越好,当被保护建筑距振源较远时,建议空沟在被保护建筑附近设置。此外,在某些特殊情况下,空沟隔振系统会由于共振现象而出现隔振效果劣化的现象,在工程设计中应予以注意。  相似文献   

16.
针对低频Rayleigh表面波,设计了部分埋入式工字形截面周期波屏障。利用有限元方法计算了结构的频散曲线,分析了带隙的形成机理,讨论了屏障埋入土体深度和截面参数对带隙的影响,在此基础上设计了具有低频超宽衰减域的梯度及分段梯度波屏障并计算了其传输谱。结果表明:周期波屏障存在较宽带隙,板埋入深度和端部尺寸是影响带隙的关键参数,通过参数调节可实现不同频段Rayleigh波的调控。工字形变截面波屏障比等截面具有更优越的隔震性能且节省材料。梯度及分段梯度波屏障显著拓宽了衰减域的频率范围,对1.5~20 Hz范围内的Rayleigh表面波实现了全覆盖,用小尺寸控制了大波长。  相似文献   

17.
为了分析台风这类强对流诱发平流层重力波的过程,本文利用中尺度数值模式WRF-ARW(V3.5)和卫星高光谱红外大气探测器AIRS数据对2011年第9号强热带气旋"梅花"的重力波特征进行了分析.首先,针对模式输出的垂直速度场资料的分析表明,台风在对流层各个方向上几乎都具有诱发重力波的能量,而在平流层内则呈现出只集中于台风中心以东的半圆弧状波动,且重力波到达平流层后其影响的水平范围可达1000km.此外,平流层波动与对流层雨带在形态、位置以及尺度上均具有一定的相似性.其次,对风场的分析结果表明,不同高度上波动形态的差异主要是由于重力波垂直上传的过程中受到了平流层向西传的背景风场以及风切变的调制作用,揭示了重力波逆着背景流垂直上传的特征.随后,基于FFT波谱分析的结果表明,"梅花"诱发的平流层重力波水平波长中心值达到了1000km,周期在15~25h,垂直波长主要在8~12km.最后,利用AIRS观测资料分析了平流层30~40km高度上的大气波动,得到了与数值模拟结果相一致的半圆弧状波动.对比结果也验证了WRF对台风诱发平流层重力波的波动形态、传播方向、不同时刻扰动强度的变化以及影响范围的模拟效果.此外,也揭示了多资料的结合对比有助于更加全面地了解台风诱发平流层重力波的波动特征.  相似文献   

18.
列车引起场地振动的建模需要能够表达地层的动力格林函数.本文兼顾饱和土的流固两相耦合性、场地土的分层性和波动的三维传播性,构建了半解析的场地动力格林函数.首先,基于Biot方程,在傅里叶变换域求解固体骨架和流体的位移和应力.然后采用传递矩阵方法建立地表位移和应力间的关系,得到格林函数矩阵.进而讨论矩阵的一些固有特征,提出改善竖向位移计算效率的措施.最后利用推导的格林函数计算了几个典型算例.数值结果与文献中其他方法得到的结果十分接近,与场地振动的现场观测试验基本符合.软土场地振动的计算结果高于饱和砂土场地,高速列车场地振动强度高于低速列车.当车速接近场地瑞利波速,模拟结果中显示出马赫锥.数值结果还显示,即使车速略低于瑞利波速,马赫锥也可能出现.本文推导的格林函数将有助于深入理解列车等移动激励作用下层状饱和土场地的振动特征.  相似文献   

19.
Railway induced vibrations and re-radiated noise in buildings can be mitigated by means of wave barriers in the soil. Numerical simulations demonstrate that a stiff wave barrier, consisting of a material that is stiffer than the surrounding medium, can be very effective if the stiffness contrast between the barrier and the medium is sufficiently large. This paper presents results of a lab experiment that has been carried out to validate these findings, using gelatine instead of soil in order to reduce the wavelengths and thus the scale of the test setup. An expanded polystyrene beam is employed as wave barrier, while a non-contact measurement procedure is applied for visualizing the waves in the gelatine, based on reflections of a grid of laser rays. The experimental results are found to be in line with the numerical predictions, confirming the vibration reduction effectiveness of stiff wave barriers.  相似文献   

20.
In this paper, the transmissibility of soils for vibrations induced by trains moving at different speeds is studied. The 2.5 D finite/infinite element approach adopted herein allows us to consider the load-moving effect of the train in the direction normal to the two-dimensional profile of the soils considered, and, therefore, to obtain three-dimensional responses for the soils using only plane elements. The moving train is simulated by a sequence of moving wheel loads that may vibrate with certain frequency. Two train speeds are considered, one is smaller and the other is greater than the Rayleigh wave speed of the layered soils, to represent the effects of speed in the sub-critical and super-critical ranges. In order to evaluate the effect of each parameter on the ground response induced by moving trains, parametric studies are conducted for the following parameters: the shear wave speed, damping ratio and stratum depth of the supporting soils, and the moving speed and vibration frequency of the traveling trains. Conclusions concerning the mechanism of wave propagation in layered soils are drawn from the parametric studies, which should prove useful to practicing engineers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号