首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal variations of ozone are studied by taking into consideration both photochemical and dynamical processes. Assuming that the seasonal variations of total ozone amounts are linear combinations of photochemical equilibrium variations and those due to atmospheric motions, the observed variations of the total ozone amount seem reasonably to be explained.The concept mentioned above implies that the time scale of ozone might be rather short in the lower stratosphere. The order of the half restoration time was estimated to be 10 to 102 days in the lower stratosphere. Thus the estimated time scale of ozone must be somewhat longer than that of the temperature in the lower stratosphere, of which variation usually shows its maximum in the midwinter in middle latitudes, while that of ozone shows its maximum in the late winter or early spring. As the maximum values of both quantities would appear in the early summer without air motions, the similarity in the phase differences of temperature and ozone suggests the validity of the concept of this paper.  相似文献   

2.
《Journal of Atmospheric and Solar》2003,65(11-13):1235-1243
The aim of the present paper is to study the solar response in the vertical structure of ozone and temperature over the Indian tropical region and a search for any mutual relationship between their solar coefficients on a decadal scale in the lower stratosphere. For the purpose, the data obtained by ozonesonde and Umkehr methods for the lower stratospheric ozone and that of the total ozone amount from Dobson spectrophotometer during the period 1979–2001 have been analyzed. These data are analyzed using the multi-functional regression model, which takes into account most of the known natural and anthropogenic signals. The NCEP- and MSU-satellite data for the temperature over this region have been used. Results indicate an in-phase correlation of around 0.5 between ozone and solar flux (F10.7) in the vertical structure over the equatorial station, Trivandrum (8.3°N) but no significant correlation over Pune (18.3°N). The solar components of ozone and temperature indicate an in-phase but poor correlation in the lower stratospheric altitudes over both stations. However, when total ozone content data is analyzed, it indicates a very high correlation (⩾0.9) between the solar components of ozone and temperature. The solar trend in the vertical distribution of ozone is found to be of the order of 5–25% per 100 units of F10.7 solar flux for Trivandrum but it is relatively smaller (1.6–15.2%) over Pune. The solar dependence of temperature is found to be quite significant for the entire Indian tropical region with not much latitudinal variation.  相似文献   

3.
臭氧的时空分布特征对气候和环境变化具有显著影响,随着臭氧资料数量的增加和质量的提高,有必要对臭氧时空分布特征及其与气候变化的关系进行详细研究.本文利用欧洲中期天气预报中心提供的1979—2013年的全球月平均臭氧总量资料、平流层温度场资料,采用旋转经验正交函数分解(REOF)、Morlet小波分析、合成分析等方法研究了20°N以北的北半球冬季(12—2月)臭氧总量异常的主要空间分布结构与时间演变特征,并进一步分析了主要模态与平流层上层(2hPa)、中层(30hPa)以及下层(100hPa)温度异常的关系.结果表明:近30年北半球冬季臭氧总量异常变化最显著的区域主要有5个,分别位于极地地区(75°N—90°N,0°—360°)、北半球副热带地区(20°N—40°N,0°—360°)、阿拉斯加地区(60°N—75°N,180°—260°E)、北大西洋地区(45°N—60°N,310°E—360°E)及西伯利亚地区(50°N—65°N,80°E—130°E).5个区域的冬季臭氧总量异常具有明显的年际和年代际变化特征.1980年代后期是各个区域的臭氧总量异常由年代际偏多转为偏少的转换时段.此外,各区域存在显著的年际变化周期,而且各个区域的年际周期存在明显的差异.臭氧总量异常变化与平流层温度异常变化的关系表明,臭氧总量异常的增加(减少)能够导致平流层上层温度异常偏冷(暖)和平流层中、下层温度异常偏暖(冷),其中平流层中层温度异常的偏暖(冷)程度要比下层更加明显.  相似文献   

4.
Sreedharan  C. R.  Mani  A. 《Pure and Applied Geophysics》1973,106(1):1576-1580
The vertical profiles of ozone and temperature from a series of balloon soundings at Delhi (28°N), Poona (18°N) and Trivandrum (8°N) were studied with synoptic meteorological data. While both ozone and temperature profiles show similar variations over all three stations, ozone maxima being always associated with thermally stable layers, the variations are most pronounced over Delhi, particularly in winter and in early spring when a series of western disturbances pass over north India. Both ozone and temperature profiles over Delhi show a layer structure characterized by a series of maxima and minima in both the vertical distribution of ozone and temperature and these are most pronounced in the lower stratosphere. These variations are associated with the influx of ozone-rich middle latitude stratospheric air over Delhi replacing subtropical air.  相似文献   

5.
The ozone winter maximum at high latitudes in the northern hemisphere is not evenly distributed along the longitudes. This is mainly due to the upper air circulation, both horizontally and vertically. In addition it is also strongly influenced by the largest mountain ranges. During the last two decades the air circulation in the North Atlantic has intensified. This has led to ascending motion in the upper troposphere and the lower stratosphere, which in turn has resulted in a reduced total ozone column in Northwest Europe.The large mounter ranges in Asia are initiating standing waves, with descending motions in the atmosphere behind the mountains. The descending motion leads to adiabatic warming of the lower stratosphere and the upper troposphere. Ozone-rich air is transported downwards to lower levels and stored there, where the ozone is less affected by heterogeneous chemical destruction.  相似文献   

6.
Continuous wind observations allow detailed investigations of the upper mesosphere circulation in winter and its coupling with the lower atmosphere. During winter the mesospheric/lower thermospheric wind field is characterized by a strong variability. Causes of this behaviour are planetary wave activity and related stratospheric warming events. Reversals of the dominating eastward directed mean zonal winds in winter to summerly westward directed winds are often observed in connection with stratospheric warmings. In particular, the amplitude and duration of these wind reversals are closely related to disturbances of the dynamical regime of the upper stratosphere.The occurrence of long-period wind oscillations and wind reversals in the mesosphere and lower thermosphere in relation to planetary wave activity and circulation disturbances in the stratosphere has been studied for 12 winters covering the years 1989–2000 on the basis of MF radar wind observations at Juliusruh (55°N, since 1989) and Andenes (69°N, since 1998). Mesospheric wind oscillations with long-periods between 10 and 18 days are observed during the presence of enhanced planetary wave activity in the stratosphere and are combined with a reversal of the meridional temperature gradient of the stratosphere or with upper stratospheric warmings.  相似文献   

7.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

8.
Spänkuch  D.  Döhler  W.  Kubasch  H. 《Pure and Applied Geophysics》1973,106(1):1208-1218
Summary The correlation matrix for the vertical ozone distribution and the temperature-ozone cross-correlation matrix, which was calculated from ozone soundings made over Berlin between 1967 and 1970, the statistical structure of the vertical ozone profile (correlation coefficients, average profiles, average standard deviation, relative variability) was derived for the three ozone seasons. The partial ozone pressure does not at all heights follow a normal distribution (e. g. at tropopause level). Generally, the correlation between tropospheric and stratospheric ozone is rather poor. In some layers the highest correlation coefficients, i.e. –0.3 and +0.4, occur in autumn (October to December) and in winter and spring (January to April). The correlation between the ozone amounts of various stratospheric layers is distinct in autumn, less distinct in summer (May to September) and entirely missing from January to April. Conspicuous cross-correlations between temperature and ozone have been found for all three seasons. a) With a negative correlation between tropospheric temperature and middle tropospheric to middle stratospheric ozone (maximum up to –0.8); b) with a rather strong positive correlation between the ozone amount and the temperature in the lower stratosphere (maximum up to +0.84); c) with a positive correlation between the ozone amount of the middle stratosphere and the temperature of the middle stratosphere (maximum up to +0.8). The highest correlation coefficients occur in autumn.  相似文献   

9.
Temperature structures in the height range of 0–30 km over Pan Chiao (25°N, 121°E) in northern Taiwan were studied for the period 1990–1995 using radiosonde data. The purpose of this study is to see the annual variation of tropopause temperature and height and also to study local temperature perturbations caused by the series of volcanic eruptions at Mount Pinatubo in June 1991. While the annual variation in the tropopause height and temperature is clearly observed, we found a large increase in the temperature at the tropopause and in the lower stratospheric region during the year 1992. The tropopause is warm during the year 1992 and temperature increase at the tropopause is nearly 6°C in January 1992. The annual average temperature at the lower stratosphere during 1992 shows an increase of 2°C from the normal trend. The effects of Pinatubo are in general different in the troposphere and stratosphere.  相似文献   

10.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

11.
副热带急流对中国南部地区对流层中上层臭氧浓度的影响程度及地理范围目前还研究较少,且缺乏综合使用常规气象资料及卫星资料来判识对流层中上层臭氧浓度增高的方法.本文利用NCEP再分析与最终分析资料、日本GMS-5地球静止卫星水汽云图资料,以2001年3月27~29日中国南部的临安、昆明、香港臭氧探测个例为基础,结合1996年3月29日香港与2001年4月13日临安对流层中上层高浓度臭氧分布个例对副热带急流对中国南部对流层中上层臭氧浓度的影响进行了详细分析,提出根据气象要素场判识春季中国南部对流层中上层臭氧浓度增高的充分条件为根据卫星水汽图像上的暗区、高空急流入口区的左侧辐合区、高空锋区、对流层中上层≥1 PVU的向下伸展的舌状高位涡区来综合判断.本文的分析结果表明,本文个例中对流层中上层高浓度臭氧来自平流层;香港对流层中上层低浓度臭氧来自热带海洋地区.不仅臭氧垂直廓线的多个极小与极大值表明臭氧垂直分布的多尺度变化特征,而且对流层中上层PV分布以及卫星水汽图像分析也表明大气中的多尺度运动对臭氧垂直分布特征有显著影响.本文的结果表明与副热带高空急流相联系的平流层空气侵入不仅发生在中国大陆的较高纬度地区,较低纬度的昆明与香港地区也有平流层空气侵入导致对流层中上层臭氧浓度升高.  相似文献   

12.
We have studied the effects on the ozone concentration and surface temperature, of perturbations in the atmospheric content of nitrous oxide, methane, carbon dioxide and chlorofluorocarbons (CFC). The sensitivity study has been carried out with a radiative-convective-photochemical model. The doubling of carbon dioxide concentration has the effect of warming the troposphere and cooling the stratosphere. As a result of this cooling, the change of ozone columnar density produced by 10 ppb of chlorine amount to 9.3% as compared to –10.9% obtained without temperature feedback. Perturbation in nitrous oxide correspond to an increase in NO x of the stratosphere with consequent ozone reduction while doubling the methane concentration correspond to a slight increase in columnar density. The effect of the increased methane concentration in the stratosphere contributes to reduce the effect of CFC due to the enhanced formation of HCl. The perturbation of these two minor constituents appreciably increase the greenhouse effect to 2.30 from 1.67°, obtained when carbon dioxide alone is considered.  相似文献   

13.
The zonally averaged UK Meteorological Office (UKMO) zonal mean temperature and zonal winds for the latitudes 8.75°N and 60°N are used to investigate the low-latitude dynamical response to the high latitude sudden stratospheric warming (SSW) events that occurred during winter of the years 1998–1999, 2003–2004 and 2005–2006. The UKMO zonal mean zonal winds at 60°N show a short-term reversal to westward winds in the entire upper stratosphere and lower mesosphere and the low-latitude winds (8.75°N) show enhanced eastward flow in the upper stratosphere and strong westward flow in the lower mesosphere during the major SSW events at high latitudes. The mesosphere and lower thermosphere (MLT) zonal winds acquired by medium frequency (MF) radar at Tirunelveli (8.7°N, 77.8°E) show a change of wind direction from eastward to westward several days before the onset of SSW events and these winds decelerate and weak positive (eastward) winds prevail during the SSW events. The time variation of zonal winds over Tirunelveli is nearly similar to the one reported from high latitudes, except that the latter shows intense eastward winds during the SSW events. Besides, the comparison of daily mean meridional winds over Tirunelveli with those over Collm (52°N, 15°E) show that large equatorial winds are observed over Tirunelveli during the 2005–2006 event and over Collm during the 1998–1999 events. The variable response of MLT dynamics to different SSW events may be explained by the variability of gravity waves.  相似文献   

14.
Part 2 of the present paper is focused on the planetary wave coupling from the stratosphere to the lower thermosphere (30–120 km) during the Arctic winter of 2003/2004. The planetary waves seen in the TIMED/SABER temperature data in the latitudinal range 50°N–50°S are studied in detail. The altitude and latitude structures of the planetary wave (stationary and travelling) clearly indicate that the stratosphere and mesosphere (30–90 km) are coupled by direct vertical propagation of the planetary waves, while the lower thermosphere (above 90–95 km altitude) is only partly connected with the lower levels probably indirectly through in-situ generation of disturbances by the dissipation and breaking of gravity waves filtered by lower atmospheric planetary waves. A peculiar feature of the thermal regime in the lower thermosphere is that it is dominated by zonally symmetric planetary waves.  相似文献   

15.
An observation by UHF ST radar of a subsidence pattern on the right side of the exit region of a jet streak is reported. The onset of the subsidence pattern occurred at 23:30 UTC on the 29 November 1991, when a downward motion was initiated above 14 km. The injections of stratospheric air in this region seem to have an intermittent nature; they occur during at least three intervals during the lifetime of the subsidence pattern. Comparison of these results with an ECMWF analysis suggests that it is an unfolding case. However, observation of turbulent intensities w’ greater than 60 cm s−1 at the tropopause level also suggests the existence of a turbulent flux between the stratosphere and the troposphere. From the turbulence characteristics measured by the radar and the potential temperature profile obtained by radiosonde data, the eddy diffusivity at the tropopause level has been calculated. An eddy diffusion coefficient ranging between 5 and 7 m2 s−1 is found. From these values, and with the assumption of a climatological gradient of the volume mixing ratio of ozone in the lower stratosphere, it is possible to deduce a rough estimate of the amount of ozone injected from the stratosphere into the troposphere during this event. A rate of transfer of 1.5×1020 molecules of ozone per day and per square meter is found.  相似文献   

16.
选用每天12∶00UTC时次的逐日ERA-Interim再分析资料,根据transformed Eulerian-mean(TEM)方程通过积分剩余速度珔v*,研究了1979—2011年间Brewer-Dobson(BD)环流的时空演变规律.并将其与downward control(DC)原理研究的结果进行比较,同时还探讨了平流层温度与BD环流之间的相互联系.结果表明,由TEM方程通过积分剩余速度珔v*估算的BD环流与利用DC原理估算的环流相比较,在热带地区的形势更加明显.环流在热带对流层中上层上升至平流层中下层,最高可达1hPa等压面附近.然后在热带外向极向下运动,最后在中高纬度下沉回到对流层.BD环流的上升中心及质量通量均随季节的变化产生变动,环流在冬半球的形势显著地强于夏半球.在春季和秋季期间,环流呈现出南北两半球的对称形势.从全球尺度物质输送的角度来看,在过去的33a间平流层BD环流的长期变化趋势是减弱的,且在平流层中下层减弱是明显的.环流的减弱趋势与纬向平均温度的长期变化趋势相匹配.  相似文献   

17.
Using spectral, cross-spectral, and regression methods, we analyzed the effect of the 11-year cycle of solar activity on the ozone content in the stratosphere and lower mesosphere via satellite measurement data obtained with the help of SBUV/SBUV2 instruments in 1978–2003. We revealed a high coherence between the ozone content and solar activity level on the solar cycle scale. In much of this area, the ozone content varies approximately in phase with the solar cycle; however, in areas of significant gradients of ozone mixing ratio in the middle stratosphere, the phase shift between ozone and solar oscillations can be considerable, up to π/2. This can be caused by dynamical processes. The altitude maxima of ozone sensitivity to the 11-year solar cycle were found in the upper vicinity of the stratopause (50–55 km), in the middle stratosphere (35–40 km), and the lower stratosphere (below 25 km). Maximal changes in ozone content in the solar cycle (up to 10% and more) were found in winter and spring in polar regions.  相似文献   

18.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

19.
Long-term measurements of the ozone concentration in the vicinity of the city of Berlin have been performed with ground based Dobson spectrophotometers and balloon borne systems. The respective experiments cover the past 24 years. All data have been reevaluated and corrected towards uniform calibration standards, leading to the longest European data set of total column density, altitude-dependent ozone partial pressures and the corresponding temperatures. Smoothing algorithms unravel significant long-term trends.The analysis shows an increase of ozone concentration within the middle stratosphere (below 31 km height) as well as in the troposphere over the past 24 years. On the contrary, ongoing ozone depletion in the lower stratosphere has been found.The large scale vertical redistribution of atmospheric ozone in the troposphere and the lower stratosphere seems to be in agreement with model calculations and trend predictions that have their roots in changes of the chemical composition and the ozone photochemistry due to anthropogenically induced trace gas concentrations.Deutscher Wetterdienst, Meteorologisches Observatorium Potsdam.Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg.  相似文献   

20.
The variations of total ozone at Alma-Ata (43°N, 76 °E) and ozone profiles obtained by balloon sounding at Tateno (36°N, 140°E), Wallops Island (38°N, 75°W) and Cagliari (39°N, 9°E) in the periods of Forbush decreases (FD) in galactic cosmic rays have been analysed. A decrease of total ozone was observed in the initial stage of the FD and an increase 10–11 days later. The average total deviations calculated using the superposed epoch method for 9 FD events are equal to 30 D. U. in the positive and to –18 D. U. in the negative phase. The changes of average ozone profiles, associated with 26 FD events, are more significant in the lower stratosphere and upper troposphere. The decrease of the partial ozone pressure at a height of 12–15 km is about 30 mb. These vertical variations of ozone coincide with the average changes of the respective temperature profiles. A cooling, on the average, of 3°C was observed at 12–15 km, and a heating of 4°C below this level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号