首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90–95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86–89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.  相似文献   

2.
With the emergence of very high spatial and spectral resolution data set, the resolution gap that existed between remote-sensing data set and aerial photographs has decreased. The decrease in resolution gap has allowed accurate discrimination of different tree species. In this study, discrimination of indigenous tree species (n?=?5) was carried out using ground based hyperspectral data resampled to QuickBird bands and the actual QuickBird imagery for the area around Palapye, Botswana. The purpose of the study was to compare the accuracies of resampled hyperspectral data (resampled to QuickBird sensors) with the actual image (QuickBird image) in discriminating between the indigenous tree species. We performed Random Forest (RF) using canopy reflectance taking from ground-based hyperspectral sensor and the reflectance delineated regions of the tree species. The overall accuracies for classifying the five tree species was 79.86 and 88.78% for both the resampled and actual image, respectively. We observed that resampled data set can be upscale to actual image with the same or even greater level of accuracy. We therefore conclude that high spectral and spatial resolution data set has substantial potential for tree species discrimination in savannah environments.  相似文献   

3.
曹金山  龚健雅  袁修孝 《测绘学报》2015,44(10):1100-1107
以"像方观测直线与像方预测直线必须重合"作为几何约束条件,以有理函数模型(RFM)作为高分辨率卫星影像的几何处理模型,提出了一种直线特征约束的高分辨率卫星影像区域网平差方法。本文方法仅需像方直线与物方直线相对应,无须像方直线上的像点与物方直线上的地面点一一对应。通过对圣迭戈试验区的两景IKONOS影像、斯波坎试验区的两景QuickBird影像和普罗旺斯试验区的两景SPOT-5影像进行试验,结果表明:本文方法可以充分利用直线特征作为控制条件,有效补偿RPC参数中的系统误差,获得的IKONOS、QuickBird和SPOT-5影像区域网平差的平面与高程精度均优于1个像素。  相似文献   

4.
This study examined the appropriateness of radar speckle reduction for deriving texture measures for land cover/use classifications. Radarsat-2 C-band quad-polarised data were obtained for Washington, DC, USA. Polarisation signatures were extracted for multiple image components, classified with a maximum-likelihood decision rule and thematic accuracies determined. Initial classifications using original and despeckled scenes showed despeckled radar to have better overall thematic accuracies. However, when variance texture measures were extracted for several window sizes from the original and despeckled imagery and classified, the accuracy for the radar data was decreased when despeckled prior to texture extraction. The highest classification accuracy obtained for the extracted variance texture measure from the original radar was 72%, which was reduced to 69% when this measure was extracted from a 5 × 5 despeckled image. These results suggest that it may be better to use despeckled radar as original data and extract texture measures from the original imagery.  相似文献   

5.
The amount and distribution of vegetation and ground cover are important factors that influence resource transfer (e.g. runoff, sediment) in patterned semi-arid landscapes. Identifying and describing these features in detail is an essential part of measuring and understanding ecohydrological processes at hillslope scales that can then be applied at broader scales. The aim of this study was to develop a comprehensive methodology to map ground cover using high resolution Quickbird imagery in woody and non-woody (pasture) vegetation. The specific goals were to: (1) investigate the use of several techniques of image fusion, namely principal components analysis (PCA), Brovey transform, modified intensity-hue-saturation (MIHS) and wavelet transform to increase the spatial detail of multispectral Quickbird data; (2) evaluate the performance of the red and near-infra-red bands (NIR), the difference vegetation index (DVI), and the normalised difference vegetation index (NDVI) in estimating ground cover, and (3) map and assess spatial and temporal changes in ground cover at hillslope scale using the most appropriate method or combination of methods. Estimates of ground cover from the imagery were compared with a subset of observed ground cover estimates to determine map accuracy. The MIHS algorithm produced images that best preserved spectral and spatial integrity, while the red band fused with the panchromatic band produced the most accurate ground cover maps. The patch size of the ground cover beneath canopies was similar to canopy size, and percent ground cover (mainly litter) increased with canopy size. Ground cover was mapped with relative accuracies of 84% in the woody vegetation and 86% in the pasture. From 2008 to 2009, ground cover increased from 55% to 65% in the woody vegetation and from 40% to 45% in the pasture. These ground cover maps can be used to explore the spatial ecohydrological interactions between areas of different ground cover at hillslope scale with application to management at broader scales.  相似文献   

6.
SPOT 5卫星影像测绘能力分析   总被引:6,自引:0,他引:6  
HRS同轨立体影像获取能力是SPOT5卫星最突出的一个关于测绘制图的新特性,它确定了SPOT5卫星在测绘中的重要应用前景。本文从SPOT5HRS的立体成像方式,SPOTImage公司最新推出的Reference3D产品及陕西宝鸡地区的HRS立体影像测量试验等方面对SPOT5HRS影像测绘能力进行了分析和评价,说明了SPOT5卫星影像测绘将是解决我国西部困难地区基础测绘的一种重要手段。  相似文献   

7.
Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.  相似文献   

8.
This study investigated the combined use of multispectral/hyperspectral imagery and LiDAR data for habitat mapping across parts of south Cumbria, North West England. The methodology adopted in this study integrated spectral information contained in pansharp QuickBird multispectral/AISA Eagle hyperspectral imagery and LiDAR-derived measures with object-based machine learning classifiers and ensemble analysis techniques. Using the LiDAR point cloud data, elevation models (such as the Digital Surface Model and Digital Terrain Model raster) and intensity features were extracted directly. The LiDAR-derived measures exploited in this study included Canopy Height Model, intensity and topographic information (i.e. mean, maximum and standard deviation). These three LiDAR measures were combined with spectral information contained in the pansharp QuickBird and Eagle MNF transformed imagery for image classification experiments. A fusion of pansharp QuickBird multispectral and Eagle MNF hyperspectral imagery with all LiDAR-derived measures generated the best classification accuracies, 89.8 and 92.6% respectively. These results were generated with the Support Vector Machine and Random Forest machine learning algorithms respectively. The ensemble analysis of all three learning machine classifiers for the pansharp QuickBird and Eagle MNF fused data outputs did not significantly increase the overall classification accuracy. Results of the study demonstrate the potential of combining either very high spatial resolution multispectral or hyperspectral imagery with LiDAR data for habitat mapping.  相似文献   

9.
High resolution satellite systems enable efficient and detailed mapping of tree cover, with high potential to support both natural resource monitoring and ecological research. This study investigates the capability of multi-seasonal WorldView-2 imagery to map five dominant tree species at the individual tree crown level in a parkland landscape in central Burkina Faso. The Random Forest algorithm is used for object based tree species classification and for assessing the relative importance of WorldView-2 predictors. The classification accuracies from using wet season, dry season and multi-seasonal datasets are compared to gain insights about the optimal timing for image acquisition. The multi-seasonal dataset produced the most accurate classifications, with an overall accuracy (OA) of 83.4%. For classifications based on single date imagery, the dry season (OA = 78.4%) proved to be more suitable than the wet season (OA = 68.1%). The predictors that contributed most to the classification success were based on the red edge band and visible wavelengths, in particular green and yellow. It was therefore concluded that WorldView-2, with its unique band configuration, represents a suitable data source for tree species mapping in West African parklands. These results are particularly promising when considering the recently launched WorldView-3, which provides data both at higher spatial and spectral resolution, including shortwave infrared bands.  相似文献   

10.
Erosion reduces soil productivity and causes negative downstream impacts. Erosion processes occur on areas with erodible soils and sloping terrain when high-intensity rainfall coincides with limited vegetation cover. Timing of erosion events has implications on the selection of satellite imagery, used to describe spatial patterns of protective vegetation cover. This study proposes a method for erosion risk mapping with multi-temporal and multi-resolution satellite data. The specific objectives of the study are: (1) to determine when during the year erosion risk is highest using coarse-resolution data, and (2) to assess the optimal timing of available medium-resolution images to spatially represent vegetation cover during the high erosion risk period. Analyses were performed for a 100-km2 pasture area in the Brazilian Cerrados. The first objective was studied by qualitatively comparing three-hourly TRMM rainfall estimates with MODIS NDVI time series for one full year (August 2002–August 2003). November and December were identified as the months with highest erosion risk. The second objective was examined with a time series of six available ASTER images acquired in the same year. Persistent cloud cover limited image acquisition during high erosion risk periods. For each ASTER image the NDVI was calculated and classified into five equally sized classes. Low NDVI was related to high erosion risk and vice versa. A DEM was used to set approximately flat zones to very low erosion risk. The six resulting risk maps were compared with erosion features, visually interpreted from a fine-resolution QuickBird image. Results from the October ASTER image gave highest accuracy (84%), showing that erosion risk mapping in the Brazilian Cerrados can best be performed with images acquired shortly before the first erosion events. The presented approach that uses coarse-resolution temporal data for determining erosion periods and medium-resolution data for effective erosion risk mapping is fast and straightforward. It shows good potential for successful application in other areas with high spatial and temporal variability of vegetation cover.  相似文献   

11.
From remotely sensed woody cover, we tested whether sables under hunting pressure preferred closed woodland habitats and whether those not under hunting preferred more open woodland habitats. We applied a two factorial logistic regression analysis to model the probability of occurrence of sable antelope in hunted and non-hunted areas of northwest Zimbabwe as a function of vegetation cover density (estimated by a normalized difference vegetation index (NDVI)). We validated the results by high-spatial resolution imagery derived tree canopy area. We subsequently compared the predictions from the two models in order to compare sable cover selection between hunted and non-hunted areas. Our results suggest that hunted sables are likely to select closed woodland, while non-hunted ones would prefer more open woodland habitats. We also established a significant positive relationship between NDVI and tree canopy cover, thus emphasizing the importance of remote sensing in studies that measure the impact of hunting on habitat selection of targeted species.  相似文献   

12.
Abstract

Landsat MSS, TM and SPOT XS imageries were used in conjunction with unsupervised, supervised and hybrid classilication techniques to classify land cover types in semi‐arid savannas of Mathison Pastoral Station in the Katherine region of northern Australia. Accuracy assessment was based on field data from 246 ground survey sites over a 745‐km2 study area. Of 14 land cover classes identified by traditional mapping means, all combinations of imageries and classification techniques differentiated at least seven land cover types. The overall accuracy for these classifications ranged between 43% and 67%. SPOT XS image delivered the best accuracy followed by TM and MSS; unsupervised classification performed better than supervised and hybrid methods. User's and producer's accuracy of individual land units ranged from 0% to 100%. Riparian woodlands, woodland on limestone slopes, shrubland on clay plains, woodland on limestone plains and shadows were the best‐mapped classes. The land units that were associated with undulating hills were not mapped accurately. However, incorporation of a digital elevation model (DEM) in a GIS improved the overall accuracy. The user's and producer's accuracy of dominant land cover types were also enhanced. The classification results and the efficacy of the techniques at Mathison were similar to those found for a nearby semi‐arid area (Kidman Springs) about 200 km from Mathison. However, the overall accuracy was lower at Mathison than at Kidman Springs. Spectral classification masks were developed from the SPOT XS and TM imageries at Kidman Springs, and were applied to classify SPOT XS and TM imageries at Mathison. Initial results showed that the classification mask could be successfully extrapolated to map dominant land cover types but only with moderate accuracy (50%).  相似文献   

13.
高分辨率卫星影像已经成为获取地理信息的重要数据源,而其定向是一项关键技术。本文利用单侧不同数量及分布的控制点对SPOT5 HRG影像进行了定向试验,探讨了在单侧控制条件下SPOT5 HRG影像的定向精度情况,为地面控制点获取较困难地区的影像定向提供了一条参考途径。  相似文献   

14.
The aim of the study was to elaborate a methodology for forest mapping based on high resolution satellite data, relevant for reporting on forest cover and spatial pattern changes in Europe. The Carpathians were selected as a case study area and mapped using 24 Landsat scenes, processed independently with a supervised approach combining image segmentation, knowledge-based rules to extract a training set and the maximum likelihood decision rule. Validation was done with available very high resolution imagery. Overall accuracies per scene ranged from 93 to 96%. The labelling disagreement in overlapping areas of adjacent scenes was 6.8% on average.  相似文献   

15.
High spatial resolution mapping of natural resources is much needed for monitoring and management of species, habitats and landscapes. Generally, detailed surveillance has been conducted as fieldwork, numerical analysis of satellite images or manual interpretation of aerial images, but methods of object-based image analysis (OBIA) and machine learning have recently produced promising examples of automated classifications of aerial imagery. The spatial application potential of such models is however still questionable since the transferability has rarely been evaluated.We investigated the potential of mosaic aerial orthophoto red, green and blue (RGB)/near infrared (NIR) imagery and digital elevation model (DEM) data for mapping very fine-scale vegetation structure in semi-natural terrestrial coastal areas in Denmark. The Random Forest (RF) algorithm, with a wide range of object-derived image and DEM variables, was applied for classification of vegetation structure types using two hierarchical levels of complexity. Models were constructed and validated by cross-validation using three scenarios: (1) training and validation data without spatial separation, (2) training and validation data spatially separated within sites, and (3) training and validation data spatially separated between different sites.Without spatial separation of training and validation data, high classification accuracies of coastal structures of 92.1% and 91.8% were achieved on coarse and fine thematic levels, respectively. When models were applied to spatially separated observations within sites classification accuracies dropped to 85.8% accuracy at the coarse thematic level, and 81.9% at the fine thematic level. When the models were applied to observations from other sites than those trained upon the ability to discriminate vegetation structures was low, with 69.0% and 54.2% accuracy at the coarse and fine thematic levels, respectively.Evaluating classification models with different degrees of spatial correlation between training and validation data was shown to give highly different prediction accuracies, thereby highlighting model transferability and application potential. Aerial image and DEM-based RF models had low transferability to new areas due to lack of representation of aerial image, landscape and vegetation variation in training data. They do, however, show promise at local scale for supporting conservation and management with vegetation mappings of high spatial and thematic detail based on low-cost image data.  相似文献   

16.
This paper presents a practical epipolarity model for high-resolution linear pushbroom satellite images acquired in either along-track or cross-track mode, based on the projection reference plane in object space. A new method for epipolar resampling of satellite stereo imagery based on this model is then developed. In this method, the pixel-to-pixel relationship between the original image and the generated epipolar image is established directly by the geometric sensor model. The approximate epipolar images are generated in a manner similar to digital image rectification. In addition, by arranging the approximate epipolar lines on the defined projection reference plane, a stereoscopic model with consistent ground sampling distance and parallel to the object space is thus available, which is more convenient for three-dimensional measurement and interpretation. The results obtained from SPOT5, IKONOS, IRS-P5, and QuickBird stereo images indicate that the generated epipolar images all achieve high accuracy. Moreover, the vertical parallaxes at check points are at sub-pixel level, thus proving the feasibility, correctness, and applicability of the method.  相似文献   

17.
This study describes the development of a semi-automatic object-based image analysis approach for the detection and quantification of deforestation in Zalingei, Darfur, in consequence of the increasing concentration of refugees or internally displaced persons (IDPs) in the region. The classification workflow is based on a multi-scale approach, ranging from the analysis of high resolution SPOT-4 to very high resolution IKONOS and QuickBird satellite imagery between 2003 and 2008. The overall accuracy rates for the classification of the SPOT 4 data ranged from 92% up to 95%, while those for the QuickBird and IKONOS classification have shown values of 88 and 87%, respectively. The resulting trends in woody vegetation cover were compared with the development of the local population and the variability of precipitation. The results show that the strong increase in human population in the Zalingei IDP camps can be associated with considerable decrease in woody vegetation in the camp vicinity.  相似文献   

18.
QuickBird satellite imagery acquired in June 2003 and September 2004 was evaluated for detecting the noxious weed spiny aster [Leucosyris spinosa (Benth.) Greene] on a south Texas, USA rangeland area. A subset of each of the satellite images representing a diversity of cover types was extracted and used as a study site. The satellite imagery had a spatial resolution of 2.8 m and contained 11-bit data. Unsupervised and supervised classification techniques were used to classify false colour composite (green, red, and near-infrared bands) images of the study site. Imagery acquired in June was superior to that obtained in September for distinguishing spiny aster infestations. This was attributed to differences in spiny aster phenology between the two dates. An unsupervised classification of the June image showed that spiny aster had producer's and user's accuracies of 90% and 93.1%, respectively, whereas a supervised classification of the June image had producer's and user's accuracies of 90% and 81.8%, respectively. These results indicate that high resolution satellite imagery coupled with image analysis techniques can be used successfully for detecting spiny aster infestations on rangelands.  相似文献   

19.
A study was conducted in south Texas to determine the feasibility of using airborne multispectral digital imagery for differentiating the invasive plant Brazilian pepper (Schinus terebinthifolius) from other cover types. Imagery obtained in the visible, near-infrared, and mid-infrared regions of the light spectrum and a supervised classification approach were employed to develop thematic maps of two areas infested with Brazilian pepper. Map accuracies ranged from 84.2 to 100% for the Brazilian pepper class. Findings support using airborne multispectral digital imagery as a tool for separating Brazilian pepper from associated land cover types and further encourage exploration of airborne multispectral digital imagery and image processing techniques for developing maps of Brazilian pepper infestation in Texas and abroad.  相似文献   

20.
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing ‘optimal segmentation’. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号