首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105°E ~ 120°E, 5°N ~ 20°N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, θse should be greater than 335°K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105°E ~ 120°E,5°N ~ 20°N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.  相似文献   

2.
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.  相似文献   

3.
Based on the studies in Part Ⅰ (see Mao et al.2003),this paper further examines the relationship between the Asian summer monsoon onset and variation in meridional position of the warm temperature ridge with a zonal orientation in mid-upper troposphere.During the Asian monsoon bursting consequentially over the Bay of Bengal,South China Sea,and South Asia,in addition to the reversal of winds in the lower and upper troposphere and deep convection before and after the onset,the atmospheric meridional temperature gradient (MTG) in the vicinity of the ridge-surface of subtropical high (WEB defined in Part Ⅰ) exhibits a significant reversal.Since the establishment of temperature structure with higher over north than over south of the WEB in the mid-upper troposphere (200-500 hPa) characterizes the collective essential that the Asian summer monsoon bursts over different areas,the MTG in mid-upper troposphere,based on the thermodynamics associated with the seasonal transition,should be a reasonable index to measure the Asian monsoon onset.The definition for onset date is proposed,and the time series of onset date for different sections are determined.As compared with the onset dates determined by other indices such as 850-hPa zonal wind and OLR.correlation analyses indicate that the 850-hPa zonal wind is only regional index,but the MTG index is applicable universally to the Asian monsoon regime.  相似文献   

4.
The Earliest Onset Areas and Mechanism of the Tropical Asian Summer Monsoon   总被引:1,自引:0,他引:1  
The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120癊are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM) burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM). Besides, the temporal relations between the TASM onset and the seasonal variation of the South Asian high (SAH) are discussed, too, and it is found that there are good relations between the monsoon onset time and the SAH center positions. When the SAH center advances to north of 20°N, the SCSSM onsets, and to north of 25°N, the TISM onsets at its south end. Comparison between the onset time such determined and that with other methodologies shows fair consistency in the SCS area and some differences in the IP area.  相似文献   

5.
The NCEP reanalyzed data, OLR and SST observations are used to study the onset time and the multi-time scales features of the South China Sea (SCS) summer monsoon in 1998 and its interaction with the sea surface temperature and the effect on the precipitation in Guangdong province. It is found that the 1998 SCS summer monsoon set in on May 17 (in the fourth pentad of the month). The year witnesses a weak monsoon with the OLR oscillating at cycles of about 1 month and the Southwest Monsoon of about 1/2 month. The mon-soon over the Bay of Bengal and the cross-equatorial current near 105°are two driving forces for low-frequency variations of the SCS monsoon. The weak activity in the year was resulted from positive anomalies of SST in the equatorial eastern Pacific in early spring and subsequent formation of positive anomalies of SST in the SCS through the Arabian Sea.  相似文献   

6.
Based on the method of composite analysis, the onset process and preceding signs of summer monsoon over the South China Sea (SCS) is investigated. The result indicates that convection activities appear first over the Indo-China Peninsula prior to the onset of the monsoon, then around the Philippines just at the point of onset, implying that the convection activities around the Philippines serve as one of the reasons leading to the SCS monsoon onset. Before the SCS monsoon onset, the equatorial westerly over the Indian Ocean (75°E 95°E ) experiences noticeable enhancement and plays an important role on the SCS monsoon onset. It propagates eastward rapidly and causes the establishment and strengthening of equatorial westerly in the southern SCS, on the one hand, it results in the migration southward of the westerly on south side of the south-China stationary front by means of shift northeastward of the westerly and convection over the Bay of Bengal, on the other. Further study also shows that the intensification of equatorial westerly in the Indian Ocean (75°E 95°E) and the southern SCS is closely related to the reinforcement of the Southern-Hemisphere Mascarene high and Australian high, and cross-equatorial flow northward around Somali, at 85°E and 105°E, respectively.  相似文献   

7.
The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer monsoon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25–28N to around 30N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500–200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.  相似文献   

8.
ON THE PROCESS OF SUMMER MONSOON ONSET OVER EAST ASIA   总被引:6,自引:0,他引:6  
Using daily observational rainfall data covered 194 stations of China from 1961 to 1995 andNCEP model analyzed pentad precipitation data of global grid point from 1979 to 1997,thedistribution of onset date of rainy season over Asian area from spring to summer is studied in thispaper.The analyzed results show that there exist two stages of rainy season onset over East Asianregion from spring to summer rainy season onset accompanying subtropical monsoon and tropicalmonsoon respectively.The former rain belt is mainly formed by the convergence of cold air and therecurred southwesterly flow from western part of subtropical high and westerly flow from the so-called western trough of subtropical region occurring during winter to spring over South Asia.Thelatter is formed in the process of subtropical monsoon rain belt over inshore regions of South ChinaSea originally coming from south of Changjiang (Yangtze) River Basin advancing with northwardshift of subtropical high after the onset of tropical monsoon over South China Sea.The pre-floodrainy season over South China region then came into mature period and the second peak of rainfallappeared.Meiyu,the rainy season over Changjiang-Huaihe River Basin and North China thenformed consequently.The process of summer tropical monsoon onset over South China Sea in 1998is also discussed in this paper.It indicated that the monsoon during summer tropical monsoononset over South China Sea is the result of the westerly flow over middle part of South China Sea,which is from the new generated cyclone formed in north subtropical high entering into SouthChina Sea,converged with the tropical southwesterly flow recurred by the intensified cross-equatorial flow.  相似文献   

9.
By using the daily-14 year(1983—1996)NCEP/NCAR 2.5°×2.5° reanalysis data,wecarefully study in each pentad the advance and retreat of the summer monsoon in China and givento it a new definition.This definition considered the intensity of southwesterly winds at 850 hPatogether with its degree in temperature and moisture.The result revealed that:(1)The advance of the summer monsoon in China shows three abrupt northward shifts andfour relatively stationary stays.The four stable stages correspond to the peak of the pro-summerrainy period in South China,the“Meiyu”season in the Changjiang(Yangtze)-Huaihe RiverValleys.the rainy season in the downstream of the Huanghe(Yellow)Riyer Valleys and the rainyseason in northern China.The retreat of the summer monsoon is so fast that it totally retreatsfrom the mainland at about the mid-August.(2)The northward advance of summer monsoon in China is basically controlled by theseasonal variation latitudinally of the upper level planetary westerlies.It is in roughly accord withthe temporal variation in the position of 15 m s~(-1) isotaeh at 200 hPa.The fast retreat of thesummer monsoon is mainly due to the blocking effect of the Tibetan Plateau.(3)The advance of 500 hPa subtropical high of the western Pacific is also in aecordanee withthe advance of the summer monsoon in China.During the advancement of the summer monsoon,the eastward movement of the subtropical high shows great meaning that it creates the essentialcondition for the convergence of southward intrusion cold airs with the warm and humidsouthwesterly winds,which result in precipitation.There are three manifest eastward movementsof the subtropical high during its northward advancement.They coincide correspondingly to thebeginning of the peak of the pre-summer rainy period in South China,the“Meiyu”season in theChangjiang(Yangtze)-Huaihe River Valleys and finally the rainy season in northern China.Thewestern part of the subtropical high moves eastward to the region of Japan in late July and thebeginning of August.It then stays there for quite a long time which results in the straightmovement of cold airs intruding from the north to the east of Tibetan Plateau,i.e.the easternregion of China.This provides good condition for the fast southward retreat of the summermonsoon.(4)The intensifieation and development of the Tibetan high at 200 hPa are closely related to the eastward movement of the subtropical high,they often occur simultaneously.  相似文献   

10.
In this paper,we use a two-dimensional primary equation model which contains (1) heating ofradiation,(2) heating of condensation,and (3) transfers of sensible and latent heat between air andthe underlying surface.To investigate the causes for the formation of the eastern North Pacific sum-mer monsoon,the data at 110°W are obtained and winds at underlying surface and at 200 hPa aremodified under the conditions (1) removing topography and (2) changing meridional sea surface tem-perature (SST) gradient.In the numerical modification,we find that by removing the topography,the center's location ofthe eastern North Pacific summer monsoon does not change,but the intensity of the summer monsoonis weakened.Also the onset of the summer monsoon is delayed to the end of May.The tropical east-erly jet is weakened obviously,even changes to westerly wind.On the other hand,we find that theSST gradient along 110°W influences the eastern North Pacific summer monsoon distinctly.If theSST gradient is decreased,the center of the southwest wind near 12°N does not exist any more.theintensity of the whole summer monsoon becomes very weak and the circulation pattern of the summermonsoon also changes a lot.Finally,we indicate that both topography and meridional SST gradient play important roles inthe occurrence of the eastern North Pacific summer monsoon.The meridional SST gradient is themost important factor that triggers the summer monsoon and the topography along 110°W influencesthe intensity and the onset time of the summer monsoon there mostly.  相似文献   

11.
Using NCEP reanalysis data and an airflow trajectory model based on the Lagrangian method, the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the daily backward trajectories on the height of 850 hPa above the South China Sea (SCS) area are simulated from April to June. The onset date of the SCS summer monsoon from 1948 to 2009 is determined according to the simulated source of airflow in the monitored area of the SCS. By analyzing the SCS monsoon onset dates over the 62 years, we found that the number of years in which the SCS monsoon onset is earlier accounts for 13%, and the later years 14%, the normal years 73%, of all the 62 years. Analyses with the Lagrangian method, done in comparison with the other two methods which combine wind and potential pseudo-equivalent temperature, were performed to determine the onset dates of the SCS summer monsoon. In some years, the source of the southwest airflow in the monitored area of the SCS is in the subtropical region before the onset of the SCS monsoon, so the airflow from the subtropics can be distinguished with the airflow from the tropics by using the Lagrangian method. The simulation by the trajectory model indicated that in some years, after the onset of SCS summer monsoon, the SCS will be controlled by the southeast wind instead of the southwesterly usually expected.  相似文献   

12.
The characteristics of atmospheric heat source associated with the summer monsoon onset in the South China Sea (SCS) are studied using ECMWF reanalysis data from 1979 to 1993. A criterion of the SCS summer monsoon onset is defined by the atmospheric hea…  相似文献   

13.
The results by statistical analysis of black body Temperature (TBB) pentad mean from the Japanese GMS in the period of May to August, 1980-2002, show that the summer monsoon index (SMI) is defined to be the pentad mean TBB≤273 K. Its intensity includes three levels: TBB>268 K for weak monsoon, 268 K≥TBB>263 K for normal monsoon and TBB≤263K for strong monsoon over the South China sea and East Asia. In the meantime, a diagnostic method using TBB pentad anomaly is also introduced to help identify monsoon intensity. The SMI is used to run statistical analyses of the initial onset of the monsoon and its pentad variations with the year and month. A fairly close relationship is found between pentad monsoon activity and heavy rainfall periods in the two typical flood years of 1994 and 1998, which resulted from heavy rainfall over the Yangtze River basin and south China.  相似文献   

14.
The time and space variations of the ten-day mean surface sensible heat flux have beenanalyzed in this paper based on the data of NCEP/NCAR from January of 1979 to December of1995 in the South China Sea(SCS)monsoon region.It is found that large variations of the surfacesensible heat flux standard deviations exist in the northwestern Indochina Peninsula and the IndianPeninsula regions,and their locations and strength change significantly during the onset period ofSCS monsoon.The negative deviations appear evidently earlier in the Indocbina Peninsula than inthe Indian Peninsula but the deviation strength in the Indian Peninsula is stronger than that in theIndochina Peninsula.The appearance of the zonal negative mean deviations in the southern part ofthe Indochina Peninsula corresponds to the date of the SCS summer monsoon onset,while theoccurrence of the deviation decrease corresponds to the date of the South Asian monsoon onset.The sensible heat flux increases dekad by dekad before the onset of the summer monsoon in theIndian Peninsula and the Indochina Peninsula and decreases after the monsoon onset.Therefore,the surface sensible heat flux changes in the Indochina and the Indian Peninsula regions maybe havesome connections with the SCS monsoon onset and the Indian monsoon onset,and the IndochinaPeninsula maybe becomes the sensitive or key region to the SCS monsoon onset and the land maybeplays an important role in triggering summer monsoon onset.  相似文献   

15.
The latest dataset from the SCS(South China Sea)Monsoon Experiment is used to investigatethe features of abrupt change in some meteorological elements before,during and after the summermonsoon's establishment in 1998 and explore its onset characteristic process.We have arrived at apreliminary conclusion that the 1998 Asian summer monsoon is established first in the SCS as earlyas May 23,which is representative of the earliest indicator of the conversion from a winter into asummer monsoon situation in Asia;the continued retreat eastward of the western Pacificsubtropical high from the SCS region has direct effect on the SCS summer monsoon establishmentbecause the withdrawal favors the release of unstable energy,responsible for the sudden onset ofthe monsoon.Our tentative investigation indicates that the eastward extension of the westerly andrainfall band from the equatorial Indian Ocean into the Indo-China Peninsula and the southwardspreading of an active South-China stationary front,acting as the interaction between mid and lowlatitude systems,are likely to be the characteristic events contributing to the subtropical high'seastward retreating and the summer monsoon's onset over the SCS.  相似文献   

16.
In this paper,the relationship between a pair of low-frequency vortexes over the equatorial Indian Ocean and the South China Sea(SCS) summer monsoon onset is studied based on a multi-year(1980-2003) analysis.A pair of vortexes symmetric about the equator is an important feature prior to the SCS summer monsoon onset.A composite analysis shows that the life cycle of the pair of vortexes is closely associated with the SCS summer monsoon onset.The westerly between the twin cyclones is an important factor to the SCS summer monsoon onset process.  相似文献   

17.
Based on NCEP/NCAR daily reanalysis and the Tropical Rainfall Measuring Mission data, the background atmospheric circulation and the characteristics of meteorological elements during the period of the Bay of Bengal monsoon (BOBM) and the South China Sea (SCS) monsoon (SCSM) in 2010 are studied. The impacts of the BOBM onset on the SCSM onset and the relationship between the two monsoons are also analyzed. The two main results are as follows. (1) The BOBM onset obviously occurs earlier than the SCSM onset in 2010, which is a typical onset process of the Asian monsoon. During the BOBM’s onset, northward jump, and eastward expansion, convective precipitation and southwest winds occurred over the SCS, which resulted in the onset of the SCSM. (2) The relationship among strong convection, heavy rainfall, and vertical circulation configuration is obtained during the monsoon onsets over the BOB and SCS, and it is concluded that the South Asian High plays an important role in this period.  相似文献   

18.
In this paper,the p-σ five layer primitive equation model segmented by mountains and physical parameterizations including short wave radiation; long wave radiation; large-scale and convective condensation;heat and moisture transport from surface to the first model level is used.The horizonial resolution is 5° lat.×5° long.with the integration region from 25°S to 55°N and from 5°W eastward to 175°W.The model was spun up with perpetual June boundary conditions and forcing starting with June zonal mean heights and geostrophic wind field.In order to investigate the effects of SST (sea surface tempefuture) over the equatorial Western Pacific and the Indian Ocean on the Asian summer monsoon,four sets of numerical experments with positive anomalies over the equatorial Western Pacific,and positive and negative anomalies over the Western Indian Ocean,and zonal mean SST (the control case) are performed.The experimental results show that the South Asian low in the lower troposphere and the anticyclone over the South Asia in the uppet troposphere intensified when positive SST anomalies over the equatorial Western Pacific is included.A statistical test method for simulations is proposed.Finally,the influence mechanism of the SST anomalies over the equatorial oceans is discussed.It is worth stressing that the effects of the SST over the equatorial oceans on the Asian summer monsoon can arise as a result of interaction of SST anomalies,atmospheric flow field and heat sources and sinks in the atmosphere.  相似文献   

19.
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989.With the aid of EOF analysis method,temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied.The results show that there is apparent seasonal transition of moistrue sink and water vapor transport between Asian monsoon region and Australian monsoon region.In winter,the Asian monsoon region is a moisture source,in which three cross-equatorial water vapor transport channels in the “continent bridge“,at 80°E and 40°E~50° transport water vapor to the Australian monsoon region and southern Indian Ocean which are moistrue sinks.In summer,Australian Monsoon region anmd southern Indian Ocean are moistrue sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink.In spring and autumn,ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.  相似文献   

20.
By using the NCEP reanalysis data set in 1979-1995, the fluxes of the latent heat, thesensible heat and the net long-wave radiation in the South China Sea (SCS) are expanded by meansof EOF in order to discuss the basic climatological features in the SCS. The detailed analysis showsthat the air-sea heat exchanges in different SCS regions have different seasonal variations. Themiddle and the north of the SCS are the high value regions of the air-sea heat exchanges during thewinter and the summer monsoon periods, respectively, the seasonal variations of air-sea heatexchanges in the south of the SCS are small. In addition, the proportions of different componentsin the total air-sea heat exchanges have different seasonal variations in different regions. Theresults show that the SCS monsoon and the air-sea heat exchanges in the SCS region are theaccompaniments of each other, the great difference of the sensible heat flux between the IndochinaPeninsula and the SCS before the SCS summer monsoon onset may be one of the triggers of thelatter. There maintains a high value center of the sensible heat flux before the 13th dekad, itsdisappearing time consists with that of the summer monsoon onset. It means that as far as the SCSlocal conditions are concerned, the northwest of the Indochina Peninsula is probably a sensitiveregion to the SCS summer monsoon onset and the land may play a leading role in the SCS summermonsoon onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号