首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Developing a general framework to capture the complexities associated with the non-linear and adaptive nature of farmers facing water resources scarcity is a challenging problem. This paper integrates agent-based modelling (ABM) and a data mining method to develop a hybrid socio-hydrological framework to provide future insights for policy-makers. The data associated with the farmers’ main characteristics were collected through field surveys and interviews. Afterwards, the association rule was employed to discover the main patterns representing the farmers’ agricultural decisions. The discovered patterns were then used as the behavioural rules in ABM to simulate the agricultural activities. The proposed framework has been was applied to explore the interactions between agricultural activities and the main river feeding the Urmia-Lake, Iran. The outcomes indicate that farmers’ acquisitive traits and belongings have significant impacts on their socio-hydrological interactions. The reported values of the efficiency criteria may support the satisfactory performance of the proposed framework.  相似文献   

2.
The reliability of a levee system is a crucial factor in flood risk management. In this study we present a probabilistic methodology to assess the effects of levee cover strength on levee failure probability, triggering time, flood propagation and consequent impacts on population and assets. A method for determining fragility curves is used in combination with the results of a one-dimensional hydrodynamic model to estimate the conditional probability of levee failure in each river section. Then, a levee breach model is applied to calculate the possible flood hydrographs, and for each breach scenario a two-dimensional hydrodynamic model is used to estimate flood hazard (flood extent and timing, maximum water depths) and flood impacts (economic damage and affected population) in the areas at risk along the river reach. We show an application for levee overtopping and different flood scenarios for a 98 km reach of the lower Po River in Italy. The results show how different design solutions for the levee cover can influence the probability of levee failure and the consequent flood scenarios. In particular, good grass cover strength can significantly delay levee failure and reduce maximum flood depths in the flood-prone areas, thus helping the implementation of flood risk management actions.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Viglione  相似文献   

3.
In flood risk management, the divergent concept of resilience of a flood defense system cannot be fully defined quantitatively by one indicator and multiple indicators need to be considered simultaneously. In this paper, a multi-objective optimization (MOO) design framework is developed to determine the optimal protection level of a levee system based on different resilience indicators that depend on the probabilistic features of the flood damage cost arising under the uncertain nature of rainfalls. An evolutionary-based MOO algorithm is used to find a set of non-dominated solutions, known as Pareto optimal solutions for the optimal protection level. The objective functions, specifically resilience indicators of severity, variability and graduality, that account for the uncertainty of rainfall can be evaluated by stochastic sampling of rainfall amount together with the model simulations of incurred flood damage estimation for the levee system. However, these model simulations which usually require detailed flood inundation simulation are computationally demanding. This hinders the wide application of MOO in flood risk management and is circumvented here via a surrogate flood damage modeling technique that is integrated into the MOO algorithm. The proposed optimal design framework is applied to a levee system in a central basin of flood-prone Jakarta, Indonesia. The results suggest that the proposed framework enables the application of MOO with resilience objectives for flood defense system design under uncertainty and solves the decision making problems efficiently by drastically reducing the required computational time.  相似文献   

4.
ABSTRACT

What implications do societies’ risk perceptions have for flood losses? This study uses a stylized, socio-hydrological model to simulate the mutual feedbacks between human societies and flood events. It integrates hydrological modelling with cultural theory and proposes four ideal types of society that reflect existing dominant risk perception and management: risk neglecting, risk monitoring, risk downplaying and risk controlling societies. We explore the consequent trajectories of flood risk generated by the interactions between floods and people for these ideal types of society over time. The results suggest that flood losses are substantially reduced when awareness-raising attitudes are promoted through inclusive, participatory approaches in the community. In contrast, societies that rely on top-down hierarchies and structural measures to protect settlements on floodplains may still suffer significant losses during extreme events. This study illustrates how predictions formed through social science theories can be applied and tested in hydrological modelling.  相似文献   

5.
《水文科学杂志》2012,57(1):12-20
ABSTRACT

What implications do societies’ risk perceptions have for flood losses? This study uses a stylized, socio-hydrological model to simulate the mutual feedbacks between human societies and flood events. It integrates hydrological modelling with cultural theory and proposes four ideal types of society that reflect existing dominant risk perception and management: risk neglecting, risk monitoring, risk downplaying and risk controlling societies. We explore the consequent trajectories of flood risk generated by the interactions between floods and people for these ideal types of society over time. The results suggest that flood losses are substantially reduced when awareness-raising attitudes are promoted through inclusive, participatory approaches in the community. In contrast, societies that rely on top-down hierarchies and structural measures to protect settlements on floodplains may still suffer significant losses during extreme events. This study illustrates how predictions formed through social science theories can be applied and tested in hydrological modelling.  相似文献   

6.
ABSTRACT

Levees are the most common structural solution to prevent flooding, reduce damage and generate benefits through more investment/economic activity in floodplain areas. While being relatively easy to build, levee effectiveness can be compromised by poor design and substandard construction methods and maintenance, thus increasing failure probability. Further, levees might increase societal vulnerability by instilling a sense of safety, the so-called “levee effect”. To cope with these phenomena, we develop a risk-based framework that quantifies residual risk under levee breaching and the levee effect, by disentangling its structural, dynamic and anthropic components, thus contributing to a better understanding of the phenomena at different spatial scales and the definition of flood risk policies. Through an illustrative example, we show how residual risk might become larger than under natural conditions, as function of the scale of interest, e.g. an area, a line at a given distance from the river, or a point within the floodplain.  相似文献   

7.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   

8.
Joy Sanyal 《水文科学杂志》2017,62(9):1483-1498
Levees are not usually built to a uniform height due to the varying priority of protecting urban and agricultural lands and they are often maintained in segments. Ad hoc alteration of the heights of these segments may aggravate flood conditions. Alterations lead to complex feedback loops in velocity and depth of water that are difficult to predict. A large number of possible configurations of the levee segments renders a deterministic modelling approach ineffective. The current analysis, based on a two-dimensional hydrodynamic model involving 1000 Monte Carlo realizations of randomly varying levee heights in segments, presents a methodology of dealing with the effect of uncertainty in levee heights on the inundation pattern in a probabilistic framework. Spatially distributed model outcomes include the likelihood of inundation, range and standard deviation of flood depths and maximum speed of water. The results indicate the necessity of adopting a probabilistic approach for robust flood hazard assessment when dealing with levee segments with uncertain heights.

EDITOR M.C. Acreman; ASSOCIATE EDITOR H. Kreibich  相似文献   

9.
ABSTRACT

Srinivasan et al. provide an interesting overview of the challenges for long-term socio-hydrological predictions. Although agreeing with most of the statements made, we argue for the need to take socio-hydrological analysis a step further and add some fundamental considerations, especially concerning the crucial importance of many (conscious and unconscious) assumptions made upfront of the modelling exercise. Eventual assumptions of technological determinism need correction: Models are not “value-free”, but uncertain, subjective and a product of the society in which they were shaped. It is important to acknowledge this uncertainty and bias when making decisions based on socio-hydrological models, considering also that these models are “social and political actors” in and by themselves. Furthermore, socio-hydrological models require a transdisciplinary approach, since physical water availability is only one of the boundary conditions for society. Last but not least, interaction with stakeholders remains important to enable understanding of what the variable of interest is.  相似文献   

10.
ABSTRACT

Ertsen discusses the representation of reality and uncertainty in our paper, raising three critical points. In response to the first, we agree that discussion of different interpretations of the concept of uncertainty is important when developing perceptual models – making different uncertainty interpretations explicit was a key motivation behind our method. Secondly, we do not, as Ertsen suggests, deny anyone who is not a “certified” scientist to have relevant knowledge. The elicitation of diverse views by discussing perceptual models is a basis for open discussion and decision making. Thirdly, Ertsen suggests that it is not useful to treat socio-hydrological systems as if they exist. We argue that we act as “pragmatic realists” in most practical applications by treating socio-hydrological systems as an external reality that can be known. But the uncertainty that arises from our knowledge limitations needs to be recognized, as it may impact on practical decision making and associated costs.  相似文献   

11.
ABSTRACT

Ertsen discusses the representation of reality and uncertainty in our paper, raising three critical points. In response to the first, we agree that discussion of different interpretations of the concept of uncertainty is important when developing perceptual models – making different uncertainty interpretations explicit was a key motivation behind our method. Secondly, we do not, as Ertsen suggests, deny anyone who is not a “certified” scientist to have relevant knowledge. The elicitation of diverse views by discussing perceptual models is a basis for open discussion and decision making. Thirdly, Ertsen suggests that it is not useful to treat socio-hydrological systems as if they exist. We argue that we act as “pragmatic realists” in most practical applications by treating socio-hydrological systems as an external reality that can be known. But the uncertainty that arises from our knowledge limitations needs to be recognized, as it may impact on practical decision making and associated costs.  相似文献   

12.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This work aims to provide a dynamic assessment of flood risk and community resilience by explicitly accounting for variable human behaviour, e.g. risk-taking and awareness-raising attitudes. We consider two different types of socio-hydrological systems: green systems, whereby societies deal with risk only via non-structural measures, and technological systems, whereby risk is dealt with also by structural measures, such as levees. A stylized model of human–flood interactions is first compared to real-world data collected at two test sites (People’s Republic of Bangladesh and the city of Rome, Italy) and then used to explore plausible trajectories of flood risk. The results show that flood risk in technological systems tends to be significantly lower than in green systems. However, technological systems may undergo catastrophic events, which lead to much higher losses. Furthermore, green systems prove to be more resilient than technological ones, which makes them more capable of withstanding environmental and social changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

14.
Palaeoflood hydraulic modelling is essential for quantifying ‘millennial flood’ events not covered in the instrumental record. Palaeoflood modelling research has largely focused on one-dimensional analysis for geomorphologically stable fluvial settings because two-dimensional analysis for dynamic alluvial settings is time consuming and requires a detailed representation of the past landscape. In this study, we make the step to spatially continuous palaeoflood modelling for a large and dynamic lowland area. We applied advanced hydraulic model simulations (1D–2D coupled set-up in HEC-RAS with 950 channel sections and 108 × 103 floodplain grid cells) to quantify the extent and magnitude of past floods in the Lower Rhine river valley and upper delta. As input, we used a high-resolution terrain reconstruction (palaeo-DEM) of the area in early mediaeval times, complemented with hydraulic roughness values. After conducting a series of model runs with increasing discharge magnitudes at the upstream boundary, we compared the simulated flood water levels with an inventory of exceeded and non-exceeded elevations extracted from various geological, archaeological and historical sources. This comparison demonstrated a Lower Rhine millennial flood magnitude of approximately 14,000 m3/s for the Late Holocene period before late mediaeval times. This value exceeds the largest measured discharges in the instrumental record, but not the design discharges currently accounted for in flood risk management.  相似文献   

15.
Srinivasan et al. provide an interesting overview of the challenges for long-term socio-hydrological predictions. Although agreeing with most of the statements made, we argue for the need to take socio-hydrological analysis a step further and add some fundamental considerations, especially concerning the crucial importance of many (conscious and unconscious) assumptions made upfront of the modelling exercise. Eventual assumptions of technological determinism need correction: Models are not “value-free”, but uncertain, subjective and a product of the society in which they were shaped. It is important to acknowledge this uncertainty and bias when making decisions based on socio-hydrological models, considering also that these models are “social and political actors” in and by themselves. Furthermore, socio-hydrological models require a transdisciplinary approach, since physical water availability is only one of the boundary conditions for society. Last but not least, interaction with stakeholders remains important to enable understanding of what the variable of interest is.  相似文献   

16.
Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   

17.
ABSTRACT

We thank the authors, Brunella Bonaccorso and Karsten Arnbjerg-Nielsen for their constructive contributions to the discussion about the attribution of changes in drought and flood impacts. We appreciate that they support our opinion, but in particular their additional new ideas on how to better understand changes in impacts. It is great that they challenge us to think a step further on how to foster the collection of long time series of data and how to use these to model and project changes. Here, we elaborate on the possibility to collect time series of data on hazard, exposure, vulnerability and impacts and how these could be used to improve e.g. socio-hydrological models for the development of future risk scenarios.  相似文献   

18.
ABSTRACT

This study assessed the utility of EUDEM, a recently released digital elevation model, to support flood inundation modelling. To this end, a comparison with other topographic data sources was performed (i.e. LIDAR, light detection and ranging; SRTM, Shuttle Radar Topographic Mission) on a 98-km reach of the River Po, between Cremona and Borgoforte (Italy). This comparison was implemented using different model structures while explicitly accounting for uncertainty in model parameters and upstream boundary conditions. This approach facilitated a comprehensive assessment of the uncertainty associated with hydraulic modelling of floods. For this test site, our results showed that the flood inundation models built on coarse resolutions data (EUDEM and SRTM) and simple one-dimensional model structure performed well during model evaluation.
Editor Z.W. Kundzewicz; Associate editor S. Weijs  相似文献   

19.
《水文科学杂志》2013,58(4):655-664
Abstract

Palaeohydraulic modelling is presented for Athabasca Vallis, the youngest known catastrophic flood channel on Mars. This modelling incorporates three significant advantages over previous modelling of Martian channels: a step-backwater hydraulic model; more accurate topography; and improved flood height indicators. The maximum modelled palaeodischarge is between 1 × 106 and 2 × 106m3s?1 depending on the friction coefficient selected. An anomalously high palaeostage indicator suggests a region of ponded backwater in the channel in which streamlined forms were created through deposition, with the additional possibility of post-flood subsidence/lowering of the channel slope due to magma extrusion.  相似文献   

20.
This study modelled flood losses (economic damages) along the Middle Mississippi River (MMR) (1) using current US government estimates of flow frequencies and (2) using frequencies based on the original, unaltered discharge measurements. The official flood frequencies were quantified in the Upper Mississippi River System Flow Frequency Study (UMRSFFS), but as a last step in that study, early discharges along the MMR were reduced by up to 54% to reflect a purported bias in early measurements. Subsequently, early discharge measurements were rigorously tested, and no such bias was found. Here, flood damages were quantified using a combination of one‐dimensional hydraulic modelling and flood‐loss modelling. For all recurrence intervals, damages were much less using the UMRSFFS flow frequencies compared with the frequencies based on the original discharge measurements, with differences ranging up to 79% (100‐year event) and $2.9bn (200‐year event). Annualized losses in the study area based on the UMRSFFS frequencies were just $41.6m versus $125.6m using the raw frequencies (an underestimation of 67%). These totals do not include flood losses elsewhere along the MMR, including in metropolitan St Louis. In summary, a seemingly small methodological adjustment – in this case, a single hidden adjustment, not documented anywhere within the UMRSFFS – can have dramatic societal impacts in terms of underestimation of flood probabilities and flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号