首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent detailed mapping along the Motagua fault zone and reconnaissance along the Chixoy—Polochic and Jocotán—Chamelecón fault zones provide new information regarding the nature of Quaternary deformation along the Caribbean—North American plate boundary in Central America.The southern boundary of the Motagua fault zone is defined by a major active left-slip fault that ruptured during the February 4, 1976 Guatemala earthquake. The recurrent nature of slip along the fault is dramatically demonstrated where stream terraces of the Río El Tambor show progressive left-slip and vertical (up-to-the-north) slip. Left-slip increases from 23.7 m (youngest mappable terrace) to 58.3 m (oldest mappable terrace) and vertical slip increases from 0.6 m to 2.5 m. The oldest mappable terrace crossed by the fault appears to be younger than 40,000 years and older than 10,000 years.Reconnaissance along the Chixoy—Polochic fault zone between Chiantla and Lago de Izabal has located the traces of a previously unmapped major active left-slip fault. Geomorphic features along this fault are similar to those observed along the active trace of the Motagua fault zone. Consistent and significant features suggestive of left-slip have so far not been observed along the Guatemala section of the Jocotán—Chamelecón fault zone.In Central America, the active Caribbean—North American plate boundary is comprised of the Motagua, Chixoy—Polochic, and probably the Jocotán—Chamelecón fault zones, with each accommodating part of the slip produced at the mid-Cayman spreading center. Similarities in geomorphic expression, apparent amount of left-slip, and frequency and magnitude of historical and instrumentally recorded earthquakes between the active traces of the Motagua and Chixoy—Polochic fault zones suggest a comparable degree of activity during Quaternary time; the sense and amount of Quaternary slip on the Jocotán—Chamelecón fault zone remain uncertain, although it appears to be an active earthquake source. Uplift of major mountain ranges on the north side of each fault zone reflects the small but consistent up-to-the-north vertical component (up to 5% of the lateral component) of slip along the plate boundary. Preliminary findings, based on offset stream terraces, indicate a late Quaternary slip rate along the Caribbean—North American plate boundary of between 0.45 and 1.8 cm/yr. Age dating of offset Quaternary terraces in Guatemala will allow refinement of this rate.  相似文献   

2.
库车褶皱冲断带东秋里塔格构造带发育与侧断坡有关的位移转换构造.东秋里塔格冲断层是一条北倾盲冲断层,其错移地层自西向东逐渐降低,从东秋5井以西的新近系膏盐岩转换至迪那201井的古近系膏盐岩再到迪那11井的侏罗系煤系,地震剖面上侧断坡形态清晰.侧断坡东、西断坪分别是新近系吉迪克组膏盐岩和侏罗系煤系,侧断坡发育在煤上-盐下构造地层组合中.通过DQ99-196、DQ00-226、DQ00-263等构造演化剖面恢复计算,东秋里塔格构造盐上地层位移梯度向西约为103.72m/km,而盐下东秋-迪那段的位移梯度为61.65m/km.在上述地震剖面上,盐上背斜和盐下隐伏背斜的轴线位置发生了相对变化,后者自东向西逐渐向南发生偏移;野外露头观察,盐上背斜的褶皱作用也随之向西增强.在走向上,东秋里塔格构造具有构造分段性,表明侧断坡的位移量变化具有突发性.西段为库车塔吾构造,东段为东秋-迪那构造.库车塔吾构造的盐下隐伏背斜是受东秋里塔格冲断层控制的断层相关褶皱,前、后断坪分别位于吉迪克组膏盐岩和侏罗系煤系,其隐伏的构造楔与南秋里塔格背冲断层组成库车塔吾三角带.东秋-迪那构造的隐伏背斜样式与库车塔吾段相似;但南翼缺乏背冲断层,不具备三角带形态.磷灰石裂变径迹测年表明,侧断坡的发育过程最早可以追索到康村期.东秋里塔格侧断坡相关背斜的形成与自北向南的盲冲断层和区域左行扭压复合作用有关.侧断坡相关背斜的主要构造特征是由侧断坡调节上、下滑脱层之间的应变差异,同时作为油气运移通道沟通气源岩和储层;其油气勘探意义是使得煤系烃源岩生成的天然气向上运移到侧断坡相关背斜构造圈闭如迪那2之中聚集成藏.  相似文献   

3.
樊春  王二七  王刚  王世锋 《地质科学》2008,43(3):417-433
龙门山断裂带位于青藏高原东缘,构成了青藏高原和四川盆地的重要构造边界。近年来的研究表明:在新生代晚期,除了存在逆冲推覆之外,龙门山的中段和南段还发生了明显的右行走滑活动。对龙门山北段的青川断裂进行的系统研究发现:断裂具有明显的右行走滑特征,沿断裂发育大量不同规模的水系位错,其中嘉陵江水系位错规模最大,据此可确定青川断裂的最大位移量为17km。进一步的野外工作证实断裂的走滑位移在尾端发生构造变换,位于断裂南西端的轿子顶穹隆是叠加构造,吸收了青川断裂的部分位移量;位于断裂北东端的汉中盆地则是处于伸展应力环境下的断陷盆地,吸收了其大部分位移量。  相似文献   

4.
《International Geology Review》2012,54(14):1685-1696
Understanding Pangea breakup requires a robust reconstruction, and this article focuses on the Middle America sector of the supercontinent. Although most Pangean reconstructions locate the Yucatan Block along the southern USA, the Chortis Block is generally placed off southern Mexico (Pacific model), undergoing sinistral relative motion during the Mesozoic and Cenozoic. However, the Pacific model is inconsistent with the absence of a Cenozoic fault linking the Cayman transforms and the Middle America Trench. We present an alternative Pangean reconstruction, where both the Yucatan and Chortis Blocks are placed in the future Gulf of Mexico, moving Mexico westwards along the Mojave–Sonora megashear to accommodate overlap with South America. Subsequent Mesozoic and Cenozoic evolution is inferred to have occurred in two stages: (i) Jurassic clockwise rotation along the Mojave–Sonora and West Florida megashears, followed by (ii) Cenozoic anticlockwise rotation along the Sierra Madre Oriental and East Yucatan megashears. The first stage is linked to the breakup of Pangea where the Gulf of Mexico formed as a pull-apart basin. The second stage is related to the evolution of the Caribbean where the Chortis and Yucatan Blocks rotated into the trailing side of the Caribbean Plate (pirate model). The new reconstruction is consistent with major parameters, such as (i) gravity, magnetic, and palaeomagnetic data; (ii) the westward continuation of the Cayman transform faults through the Chiapas foldbelt and along the N–S front of the Sierra Madre Oriental foldbelt; (iii) the 27–19 Ma removal of the southern Mexican forearc; (iv) offset of the Cretaceous volcanic arc (Guerrero-Suina); (v) the deflection of the Laramide orogen (Sierra Madre Oriental–Zongolica–Colon); and (vi) the continuity of Cretaceous platformal carbonates containing Caribbean fauna across Middle America. In this latter context, the Motagua high-pressure belt is interpreted as a Cretaceous extrusion zone into the upper plate above a subduction zone rather than as an oceanic suture.  相似文献   

5.
青藏高原已识别出柴北缘、南阿尔金和高喜马拉雅三条超高压变质带。这些超高压变质带提供了一个不可多得的研究超高压变质岩石形成和折返的机会。柴北缘超高压变质带位于阿尔金断裂的东边,是柴达木—东昆仑地体与祁连—阿尔金微地体和阿拉善—敦煌地体碰撞的产物,由榴辉岩、石榴石橄榄岩和含柯石英片麻岩组成,榴辉岩形成时代500~440Ma,峰期超高压变质年龄440Ma。南阿尔金超高压变质带位于阿尔金断裂带的西边,以产出榴辉岩和石榴石橄榄岩为特征,榴辉岩形成时代为500Ma。南阿尔金超高压变质带被认为是柴北缘超高压变质带的西延,两者被阿尔金断裂左旋位移约400km。阿尔金断裂是巨大的深度>200km的岩石圈走滑断裂,断裂的活动时代至少早到240~220Ma,认为走滑过程中伴随的隆升作用有可能为柴北缘和南阿尔金超高压变质岩石的折返和出露地表做出了贡献,其中阿尔金断裂起到了类似剪刀型断裂的作用。高喜马拉雅超高压变质带在巴基斯坦和印度被发现,以榴辉岩中含柯石英或金刚石为特征,榴辉岩的超高压变质年龄为46Ma,表明超高压变质岩石发生在雅鲁藏布江缝合线关闭后并快速折返。喀喇昆仑断裂走滑过程中伴随的抬升作用则可能对高喜马拉雅地区超高压变质岩石的折返和出露地表做出贡献。在中国东部出露的大别—苏鲁超高压变质带被巨大郯庐断裂左旋走滑位移约500km,可以看作是走滑作用伴随的抬升运动对超高压变质岩石的最后折返和出露地表做出重要贡献的又一例证。青藏高原的隆升通常被认为是印度板块和欧亚大陆新生代以来的碰撞结果。根据高原北部断裂的时代、火山活动和沉积盆地的形成,我们提出高原的隆升是两次俯冲碰撞的结果。第一次发生在中特提斯班公湖-怒江洋盆在白垩纪时期的关闭,其时由于北部来自塔里木盆地和北中国板块及东部来自太平洋板块俯冲产生的抵柱效应,高原北部开始隆升;第二次发生在印度板块的新生代俯冲碰撞作用,造成高原的整体抬升,由此可以解释高原北部平均海拔(5000m)要高于高原南部(平均海拔4000m)。  相似文献   

6.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   

7.

The state of Chiapas (SE México) conforms a territory of complex tectonics and high seismic activity. The interaction among the Cocos, North American and Caribbean tectonic plates, as well as the active crustal deformation inside Chiapas, determines a variety of seismogenic sources of distinct characteristics and particular strong ground motion attenuation. This situation makes the assessment of seismic hazard in the region a challenging task. In this work, we follow the methodology of probabilistic seismic hazard analysis, starting from the compilation of an earthquake catalogue, and the definition of seismogenic source-zones based on the particular seismotectonics of the region: plate-subduction-related sources (interface and intraslab zones), active crustal deformation zones and the shear zone between the North American and Caribbean plates formed by the Motagua, Polochic and Ixcán faults. The latter source is modelled in two different configurations: one single source-zone and three distinct ones. We select three ground motion prediction equations (GMPEs) recommended for South and Central America, plus two Mexican ones. We combine the GMPEs with the source-zone models in a logic tree scheme and produce hazard maps in terms of peak ground acceleration and spectral acceleration for the 500-, 1000- and 2500-year return periods, as well as uniform hazard spectra for the towns of Tuxtla Gutiérrez, Tapachula and San Cristóbal. We obtain higher values in comparison with previous seismic hazard studies and particularly much higher than the output of the Prodisis v.2.3 software for seismic design in México. Our results are consistent with those of neighbouring Guatemala obtained in a recent study for Central America.

  相似文献   

8.
阿尔金断裂晚新生代左旋走滑位错的地质新证据   总被引:20,自引:5,他引:20  
通过对沿阿尔金断裂中段 (位于东经 88°至 92°)发育的晚第三纪走滑盆地沉积历史和走滑变形过程的野外观测以及对第四纪索尔库里盆地形成和演化过程的沉积环境复原的分析 ,提出了阿尔金断裂中段晚新生代左旋走滑位错的地质新证据。研究表明 ,晚第三纪走滑盆地经历了中新世晚期至上新世早期斜张走滑拉分和上新世晚期以来左旋错动的演化过程 ,沉积体沿断裂的错位分布特征指示至少发生了 80 km的左旋走滑位错。发育于阿尔金山链内部的索尔库里盆地起源于晚第三纪早期强烈的侵蚀作用 ,成为柴达木盆地快速沉积的主要物源区。该侵蚀盆地于中晚更新世闭合并演化成一个独立的沉积盆地。通过侵蚀盆地外流通道的复原指示阿尔金断裂自晚第三纪以来累积了 80~ 1 0 0 km的左旋位错。在此基础上 ,结合穿越断裂构造的 级区域水系形成的洪积裙宽度和主干河道沿断裂迹线的拐折长度 ,探讨了阿尔金断裂晚新生代左旋走滑位错量沿走向分布的特征 ,估算了左旋走滑速率  相似文献   

9.
阳江?一统暗沙断裂带是南海北部珠江口盆地极其重要的中?新生代构造带和转换带.基于钻井资料和大范围、高密度的二维、三维地震资料,本文初步揭示阳江?一统暗沙断裂带走向为NW-NWW向、宽约30 km,沿着断裂走向从陆架至洋陆边界断裂带可分为北?中?南三段,断裂在新生代选择性活化,具有多重走滑断裂叠合和基底岩浆底辟强烈等特点...  相似文献   

10.
青藏高原东缘地壳上地幔结构及其动力学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
张忠杰  陈赘  田小波 《地质科学》2009,44(4):1136-1150
本文综述了我们在青藏高原东缘实施的垂直切过龙门山断裂带宽频带地震探测的研究成果,揭示了研究区复杂的地壳上地幔结构,结果表明松潘-甘孜地块与四川盆地西缘莫霍面深度为58 km与40 km±,在龙门山断裂带下方存在约15 km的莫霍面错断; 松潘-甘孜与龙门山断裂带域地壳纵横波速度比Vp/Vs比值远大于173,预示着粘性下地壳流或基性/超基性物质的存在。探讨了研究区强烈的盆山之间以及深部不同层圈之间的相互作用,推断四川盆地对青藏高原东缘软流圈驱动的物质东向逃逸阻挡作用可能深达整个上地幔。  相似文献   

11.
The Mustafakemalpa?a Fault (MF), located among Manyas, Ulubat and Orhaneli faults, is a right lateral strike-slip and 47 km in length. The MF begins with a pressure ridge at the west and exhibits complex jog terminations at east ends in restraining left stepovers. The western section of the fault bounds Miocene and Quaternary units and continues towards ?lyasç?lar. The central segment of the fault, starts with approximately 750-m leftward stepover, exhibits a sinusoidal geometry between Kapakl?oluk and Kabulbaba. In this section, MF traverses mountainous terrain and cuts Ophiolite, Jurassic limestones and Miocene detritals, forming dextral faulting features and gaining reverse component. The eastern section exhibits left stepping en-echelon pattern and consists 2.5-km offset on the Orhaneli River. In this study, palaeoseismological findings related to the Holocene activity and active tectonic properties of the MF are presented. The trenches exposed mismatched stratigraphy, demonstrating evidence of events across the fault. We identified three events (before BC 2190, later AD 1425 and 1850) that have occurred during the past 4000 years. We suggest a long non-characteristic recurrence interval and ~0.7 mm/y slip-rate for MF, based on trench data and offset of the Late Pliocene drainage of Orhaneli River.  相似文献   

12.
The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantán that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a ~50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a ~20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantán and illustrate the potential of ERT surveying for paleoseismic studies.  相似文献   

13.
We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred during the Early Pleistocene, evidenced by eastward thrusting of Mesozoic carbonates on the Pliocene lacustrine deposits along the Minjiang upstream fault zone and by development of the transpressional ridges of basement rocks along the Anninghe river valley. The Middle Pleistocene seems to be a relaxant stage with local development of the intra-mountain basins particularly prominent along the Minjiang Upstream and along the southern segment of the Anninghe River Valley. This relaxation may have been duo to a local collapse of the thickened crust attained during the late Neogene to early Pleistocene across this marginal zone. Fault kinematics has been changed since the late Pleistocene, and was predominated by reverse sinistral strike-slip along the Minshan Uplift, reverse dextral strike-slip on the Longmenshan fault zone and pure sinistral strike-slip on the Anninghe fault. This change in fault kinematics during the Quaternary allows a better understanding of the mechanism by which the marginal ranges of the plateau has been built through episodic activities.  相似文献   

14.
青藏高原东北缘是研究高原隆升和演化的理想场所,其岩石圈结构记录了高原向外扩展的岩石圈变形行为和演化过程,本研究利用一条跨青藏高原东北缘的宽频带观测剖面(红原-景泰剖面)和部分甘肃、青海区域台网的远震体波波形资料,通过S波接收函数方法获得了青藏高原东北缘的岩石圈-软流圈边界(LAB)图像。结果表明:1)松潘-甘孜地体东北部和西秦岭造山带下方的岩石圈较薄,略向北加厚,其LAB深度为110~130 km,昆仑断层下方无明显岩石圈错断,推测松潘-甘孜地块与西秦岭造山带的岩石圈可能具有亲缘性; 2)祁连地块下方的岩石圈厚度为135~150 km,其中祁连造山带东缘的LAB震相不聚焦,反映复杂的造山带型岩石圈属性; 3)阿拉善地块下方岩石圈略向南加厚, LAB深度为130~150 km,呈向祁连造山带下方汇聚的趋势,但尚未通过海原断裂带; 4)鄂尔多斯地块下方的岩石圈较厚, LAB深度为160~170 km,反映其稳定的克拉通型岩石圈属性。  相似文献   

15.
《International Geology Review》2012,54(16):1918-1943
The recent discovery of Early Ordovician S-type granites in the southwest of the Chiapas Massif Complex adds a new perspective to the Palaeozoic history of the Maya block, inasmuch as no rocks of such age had previously been reported in this region. New geologic mapping west of Motozintla, Chiapas, revealed pelitic to psammitic metasedimentary successions (Jocote Unit) intruded by granitoids and metabasites. The Jocote Unit is unconformably underlain by the newly defined Candelaria Unit, which comprises deformed calc-silicate rocks and interlayered folded amphibolites. The Candelaria Unit is the oldest rock succession so far recognized in the southern Maya block. We used laser-ablation multicollector inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb dating to determine the ages of the rock, yielding Early Ordovician (ca. 470 Ma) and Late Ordovician (ca. 450 Ma) ages.

Major and trace element geochemistry, as well as Nd and Sr isotope data, suggest that folded amphibolites of the Candelaria Unit are mantle-derived and are probably related to rifting. The Early Ordovician bimodal magmatism of the Jocote Unit is more strongly differentiated; it reflects crustal contamination and volcanic-arc chemical signatures. A granitic stock (Motozintla pluton) intruded the area in the Late Ordovician. Its geochemical composition indicates less crustal contamination and a mixed signature between volcanic-arc and within-plate settings. Magmatic rocks analogous in age and chemical character crop out in the Rabinal and the Altos Cuchumatanes areas of Guatemala, suggesting the existence of a semi-continuous Ordovician magmatic belt from Chiapas to central Guatemala. Similar but somewhat younger granites also occur in the Maya Mountains of Belize, suggesting that magmatism migrated in the Silurian from the Chiapas–Guatemala belt towards the Maya Mountains.  相似文献   

16.
The Denali Fault is an active strike‐slip fault system responsible for the highest topography in North America, yet there are conflicting constraints on the fault's Cenozoic slip history. The long‐term slip rate constraint of the eastern Denali Fault is ~400 km since 57 Ma. In apparent conflict, the long‐term slip rate of the western Denali Fault is 38 km since 38 Ma based on the reconstruction of the Foraker and McGonagall plutons. Tests of the genetic relationship of the plutons with bulk rock geochemical and paired U‐Pb and Hf zircon analysis suggest a disparate origin. The McGonagall pluton, despite having a lower SiO2, has lower εHf values inconsistent with chemical and isotopic variations between the two being the result of contamination. The Denali Fault is a highly strain partitioned system, but the amount of Cenozoic slip dispersed east to west is likely significantly less than the previous ~360 km constraint.  相似文献   

17.
ABSTRACT

We discuss the 2018 publication that reports petrographic, heavy mineral data, mineral chemistry, and zircon geochronology for Oligocene sandstones in the Cerro Pelón area in southern Mexico Sureste basin. As the title of their paper says, the goal of their study is to establish the source (s) of the voluminous Cenozoic section in this region, reaching several kilometres in thickness and important as a petroleum system. These authors conclude that Oligocene sandstones of La Laja Formation were mostly sourced from eclogite- to greenschist-facies metasedimentary, metaigneous, and ultramafic rocks of the Guatemala suture complex. Minor contributions from the Chiapas Massif Complex, exposed directly to the south ~60 km of the Cerro Pelón area, were also suggested by the authors. They thus conclude that the Palaeogene stratigraphic record in southeastern Mexico was mostly controlled by the development of the Caribbean–North America plate boundary rather than by orogenic processes at the Pacific margin of North America. Presently, we do not agree with the conclusions of Ortega Flores and colleagues who studied the Cerro Pelón section, thus some discussion is required. Serpentinite bearing Nanchital Conglomerate is well exposed in the Cerro Pelón area, and high- to low-grade metamorphic rocks experienced an uplift in the vicinity of the Cerro Pelón area at the time of deposition of the La Laja Formation. We believe the data are better explained by multiple local sources in southern and eastern Oaxaca as well as sources to the south and southwest, which include the Cenozoic coastal batholith, the Grenvillean/Guichicovi basement complexes, the Chiapas Massif, the Mazatlán schist and other units in the Cuicateco Belt, as well as the Mesozoic cover of these areas (Todos Santos Formation, Cretaceous carbonate rocks, and Paleogene strata such as the Soyaló and Bosque Formations).  相似文献   

18.
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt.

The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults.

The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated.  相似文献   

19.
郯庐剪切带的性质和意义   总被引:11,自引:0,他引:11  
沿郯庐断裂带从大别山东麓经山东中部至辽北吉南的新宾—桦甸地区,暴露的早前寒武纪结晶岩石中存在着一系列北北东走向的大型韧性剪切带,其最大宽度达20km,走向断续延伸近2000km,它们分别在大别、鲁西和新宾地区形成了巨大的弧形牵引构造。剪切带中不同尺度组构要素的几何学,指示其中曾经发生了一致的大幅度左行位移;变形岩石的显微构造和矿物组合特征,说明这一韧性剪切带早期形成于低角闪岩相条件下,并且在抬升和冷却过程中经历了绿片岩相条件下的递进变形。山东中部晚元古代以后的沉积不整合于韧性剪切带及其变形岩石之上,中生代未期脆性的郯庐断裂系统追踪并改造了基底岩石中的韧性剪切带。  相似文献   

20.
THE CENTRAL PAMIR—AN ALPINE COLLISION ZONE  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号