首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地基渐进破坏及极限承载力的Cosserat连续体有限元分析   总被引:2,自引:2,他引:2  
唐洪祥  李锡夔 《岩土力学》2007,28(11):2259-2264
利用Cosserat连续体理论和所发展的有限元数值方法,模拟了地基由应变软化引起的以应变局部化为特征的渐进破坏过程,并从等价塑性应变的发展变化,阐述了渐进破坏过程对所能发挥的极限承载能力的影响。结果表明,Cosserat连续体模型能有效地模拟由应变软化引起以应变局部化为特征的渐进破坏现象,对地基等土工结构物有必要进行渐进破坏分析。同时指出,在求解软化型土体地基的极限承载力时,如果仍按传统的极限平衡或极限分析理论进行分析,可能得出偏于危险的结果。  相似文献   

2.
考虑界面软化特性的垃圾填埋场斜坡上土工膜内力分析   总被引:2,自引:0,他引:2  
林伟岸  朱斌  陈云敏  詹良通 《岩土力学》2008,29(8):2063-2069
为分析垃圾填埋场斜坡上防渗系统中的土工膜在上覆垃圾堆体重力作用下产生的拉应力,考虑土工膜-黏土界面的应变软化特性,通过建立土工膜受力的平衡方程获得了土工膜拉应力的解析解。与传统方法相比,该方法可分析土工膜-黏土界面不同位置所处的3种应力状态:弹性状态、软化状态及残余状态,从而使得垃圾填埋场斜坡上土工膜的受力分析更为合理。参数分析显示,当软化阶段的强度损失及残余位移与峰值位移的差值较小时,土工膜-黏土界面的峰值强度对土工膜最大拉应力的影响较小,而其残余强度是主要控制因素;而当土工膜-黏土界面的软化特征较明显时,则峰值强度和残余位移的影响也更为明显。另外,土工膜上覆堆体高度、斜坡坡度及土工膜锚固长度对土工膜拉应力也有较大影响。  相似文献   

3.
肖国峰  陈从新 《岩土力学》2018,39(8):3001-3010
岩桥的破裂贯通是一种非连续变形现象。强度折减技术虽然是渐进破坏过程模拟的主流技术,但其不具备描述非连续变形现象的能力。提出连通率折减法和刚度折减法来模拟含非贯通结构面岩块的渐进破坏过程,并建立考虑渐进破坏过程的块体稳定分析方法。首先,引入Goodman单元来描述共面非贯通结构面的岩桥部分和裂隙面部分,建立静力平衡方程来求解滑裂面内岩桥单元和裂隙面单元的应力。其次,岩桥单元采用Griffith准则来判别破坏,利用连通率折减法来描述其破裂;裂隙面单元采用MC准则来判别破坏,用刚度折减法来描述其屈服;通过循环迭代,模拟岩桥单元的破裂过程和裂隙面单元的应力调整过程,实现整个滑裂面的渐进破坏过程模拟。然后,定义考虑渐进破坏过程的滑裂面极限状态;通过自重超载方式将滑裂面推送至极限状态;基于极限状态设计的理论框架,计算度量块体稳定性的安全系数指标。工程实例分析结果表明,渐进破坏过程模拟结果与现场调查结果是一致的。渐进破坏过程的模拟实现,有助于岩质边坡变形破坏机制分析从定性分析阶段扩展至定量分析阶段。  相似文献   

4.
谢新宇  冯香  吴晓明 《岩土力学》2015,36(Z2):679-684
在考虑土性参数的不确定性和土体应变软化特性的基础上,以可靠度方法建立了边坡渐进破坏的极限状态方程。通过计算边坡局部破坏概率,确定边坡中最危险的土条,并推导出破坏起始于该土条,逐渐向两侧扩展的渐进破坏概率计算公式。该方法能很好地反映边坡局部破坏的产生、扩展及对边坡整体稳定性的影响,找到最贴近实际情况的破坏传播路径,为边坡稳定分析提供了理论依据。通过算例分析可知,滑动面上各个土条的局部破坏概率均不相等,破坏起始于中部第8土条,破坏先向上传递,后向下传递至坡脚,并非从坡脚向坡顶传递的牵引式破坏,或从坡顶向坡脚传递的推移式破坏。  相似文献   

5.
土工格栅被广泛应用于路堤、边坡、挡土墙等加筋土工程,而筋土界面分析是研究加筋作用机理的关键。根据土工格栅拉拔荷载下的受力状态,分析了拉拔试验实际剪应力与位移关系,发现界面软化阶段剪应力与位移近似呈指数分布,已有计算模型大多高估了界面剪应力,提出了能够考虑界面渐进破坏及非线性特性的弹性-指数软化模型。通过筋土界面基本控制方程,得到了土工格栅拉拔荷载下不同阶段受力状态的计算模型。对界面剪应力发展历程及分布规律展开了较为细致的研究,同时进行了参数分析,包括剪切刚度、抗拉刚度、加筋长度、软化指数衰减特征系数等。结果表明,土工格栅拉拔过程中,当筋土界面处于弹性阶段时,界面剪应力不均匀性及界面最大剪应力随剪切刚度增大而增加,弹性模量则相反;软化阶段内,加筋长度越长,界面软化现象越明显,加筋长度较短时,可近似认为界面剪应力呈均匀分布;软化指数衰减特征系数越大,界面剪应力波动越大,其峰值往拉拔端移动;进入残余阶段后,界面剪应力由拉拔端向自由端增大且逐渐趋于残余应力。研究成果可为加筋土工程土工格栅选取提供理论指导。  相似文献   

6.
边坡稳定性评价方法有局部和整体两类,两者之间存在差异有其历史的局限性和存在的合理性。以极限平衡法和有限元强度折减法为例,分析了典型整体与局部稳定性评价方法在滑面搜索、平衡条件、安全系数的定义、材料参数和失稳等5个方面存在的异同。利用PFC算例揭示了真实边坡带有强烈空间和时间特征的渐进破坏特性,发现边坡失稳是自然地形的重塑、再造和稳定的过程,也是一个动势能转换和耗散的过程。针对边坡稳定问题及其特点,提出了基于广义软化的边坡稳定矢量和法的理论构架和技术路线,并进行了程序实现,克服了传统强度折减脱离实际材料劣化特征的不足,安全系数求解仅与应力状态相关,假设条件少,可以实现局部与整体稳定评价的辩证统一,可以反映边坡失稳的渐进特性和参数演化的时空效应。与传统极限平衡法(LEM)和强度折减法(SRM)在滑面和安全系数方面的综合对比发现,局部稳定揭示的滑面更稳定,获取的安全系数是全周期的,文中方法所得安全系数比整体方法的结果稍高,差异是整体方法的假设条件造成的。  相似文献   

7.
膨胀土边坡受降雨影响产生膨胀变形,是典型的非饱和土多场耦合问题。为探究降雨入渗对其渐进性破坏的失稳过程,基于饱和-非饱和渗流理论、膨胀土弹塑性本构关系和应变软化理论,利用应变软化模型、FLAC3D二次开发平台和内置FISH语言,提出了一种综合考虑非饱和渗流、膨胀变形和应变软化的多场耦合数值分析法。结合工程实例,通过该方法探讨了降雨入渗条件下膨胀土边坡非饱和渗流、位移响应及渐进性破坏的变化规律。结果表明:膨胀变形和应变软化受控于非饱和渗流的时空分布,对边坡位移响应过程影响显著,也易导致饱和-非饱和分界带形成剪应力集中区。膨胀土边坡渐进性破坏由局部破坏转变为整体性失稳,其塑性破坏区首先随悬挂型暂态饱和区的变化向坡内扩展,雨后逐渐形成第二条由坡脚向坡顶扩展的滑动带,呈现出多重滑动性和后退牵引式的破坏特征。  相似文献   

8.
This study evaluates the potential use of cement-kiln dust (CKD), a waste product from the cement industry, for enhancing the mechanical as well as the hydraulic properties of soils in arid lands. Stabilized products will play a major role in reducing slope failures, pavement damage and the design of containment barriers for hazardous waste in arid lands. Various tests to determine the different physical properties of the stabilized matrix were conducted and the optimum mixture that produces maximum internal energy and minimum hydraulic conductivity was selected. The effect of soaking and unsoaking of the treated specimens on the mechanical properties was also evaluated. The effect of metal ion concentration and conjugate anions on the resultant hydraulic conductivity was evaluated. The optimum percentage of CKD was calculated by using stress-strain data, Newton's divided difference and Simpson's integration technique. The analyses have shown that 6% by weight of CKD is the optimum mix design, which increases the shear strength and decreases the hydraulic conductivity to less than 10-9 m/s. Therefore, the treated soil could be used as a soil-based barrier layer for containment of hazardous waste.  相似文献   

9.
This paper presents a numerical method that can be used to evaluate the post-failure deformation of slopes and embankments. The method is based on a large deformation finite element analysis employing the updated Lagrangian formulation. It can simulate the changing geometry of slopes during failure. An extended Mohr–Coulomb constitutive model represents the strain softening behaviour of slope material. The results of a series of analyses show that the post-failure deformation of slopes is a function of the rate of strength reduction and also the stiffness of the slope material. These two factors influence the initiation of progressive failure of slopes. The validity of the method is evaluated by simulation of a test embankment failure and comparison of the predicted results with the observed record of the failure.  相似文献   

10.
Containment landfills: the myth of sustainability   总被引:5,自引:0,他引:5  
A. Allen   《Engineering Geology》2001,60(1-4):3-19
A number of major problems associated with the containment approach to landfill management are highlighted. The fundamental flaw in the strategy is that dry entombment of waste inhibits its degradation, so prolonging the activity of the waste and delaying, possibly for several decades, its stabilisation to an inert state. This, coupled with uncertainties as to the long-term durability of synthetic lining systems, increases the potential, for liner failure at some stage in the future whilst the waste is still active, leading to groundwater pollution by landfill leachate. Clay liners also pose problems as the smectite components of bentonite liners are subject to chemical interaction with landfill leachate, leading to a reduction in their swelling capacity and increase in hydraulic conductivity. Thus, their ability to perform a containment role diminishes with time. More critically, if diffusion rather than advection is the dominant contaminant migration mechanism, then no liner will be completely impermeable to pollutants and the containment strategy becomes untenable.

There are other less obvious problems with the containment strategy. One is the tendency to place total reliance on artificial lining systems and pay little attention to local geological/hydrogeological conditions during selection of landfill sites. Based on the attitude that any site can be engineered for landfilling and that complete protection of groundwater can be effected by lining systems, negative geological characteristics of sites are being ignored. Furthermore, excessive costs in construction and operation of containment landfills necessitate that they are large scale operations (superdumps), with associated transfer facilities and transport costs, all of which add to overall waste management costs. Taken together with unpredictable post-closure maintenance and monitoring costs, possibly over several decades, the economics of the containment strategy becomes unsustainable. Such a high-cost, high-technology approach to landfill leachate management is generally beyond the financial and technological resources of the less wealthy nations, and places severe burdens on their economies. For instance, in third world countries with limited water resources, the need to preserve groundwater quality is paramount, so expensive containment strategies are adopted in the belief that they offer greatest protection to groundwater. A final indictment of the containment strategy is that in delaying degradation of waste, the present generations waste problems will be left for future generations to deal with.

More cost-effective landfill management strategies take advantage of the natural hydrogeological characteristics and attenuation properties of the subsurface. The ‘dilute and disperse’ strategy employs the natural sorption and ion exchange properties of clay minerals, and it has been shown that in appropriate situations it is effective in attenuating landfill leachate and preventing pollution of water resources. Operated at sites with thick clay overburden sequences, using a permeable cap to maximise rainfall infiltration and a leachate collection system to control leachate migration, ‘dilute and disperse’ is a viable leachate management strategy. Hydraulic traps are relatively common hydrogeological situations where groundwater flow is towards the landfill, so effectively suppressing outwards advective flow of leachate. This approach is also best employed with a clay liner, taking advantage of the attenuation properties of clays to combat diffusive flow of contaminants. These strategies are likely to guarantee greater protection of groundwater in the long term.  相似文献   


11.
Chia-Nan Liu 《Landslides》2009,6(2):129-137
In many slopes, overstressed zones can develop where the shear stress is larger than the available shear strength. Along a shear surface within a soil exhibiting a strain-softening behavior, the shear displacement increases while the available shear strength decreases. The excess shear stress is transferred from the overstressed zone to the adjacent zones, providing more shear strength. This stress-transferring mechanism induces stress redistribution within the slope and could enlarge the overstress zone. A one-dimensional model that satisfies the strain compatibility and force equilibrium is proposed for the stability analysis of a slope of strain-softening behavior. This paper’s objective is to facilitate the application of this model to estimate stress distribution along the failure surface of a strain-softening slope and thereafter the stability status. The study presents a set of specific solutions to this model by describing and demonstrating procedures to identify the pattern of a stress state and to calculate stress distribution within a one-dimensional, strain-softening slope. The progressive failure mechanism is also investigated by using the proposed approach. As the magnitude of released stress gets large enough, it induces an overstressed zone adjacent to the initial unstable zone and progressive failure develops. The proposed approach is also applied to study the pattern of stress redistribution. It is found that the pattern of stress redistribution is affected by the magnitude of released stress. It is too complex to be reasonably expressed by simple models. Though some limitations exist, the proposed approach serves as a simple tool for a better understanding of the progressive failure mechanism.  相似文献   

12.
裂隙性粘土边坡渐进性破坏的FLAC模拟   总被引:11,自引:2,他引:9  
王志伟  王庚荪 《岩土力学》2005,26(10):1637-1640
裂隙性粘土是一种具有特殊性质的粘土,这种粘土边坡的破坏是渐进性的,传统的极限平衡法无法描述分析它的破坏过程和机理,也无法精确地判断它的长期稳定性。用FLAC程序对裂隙性粘土边坡的渐进性破坏过程进行了描述,算例表明在一定程度上用FLAC程序来模拟边坡渐进破坏和进行稳定性判断是可行的。  相似文献   

13.
袁颖 《地质与勘探》2021,57(1):183-189
考虑岩质边坡后缘张裂隙中的孔隙水压力及地下水对软弱结构面的物理化学作用,将软弱结构面分为应变硬化区和应变软化区,建立单平面滑动破坏的岩质边坡力学模型,引入尖点突变理论,建立尖点突变模型,推导岩质边坡突变失稳的充要力学条件判据,并重新推导极限平衡法的临界稳定系数。结果表明,分叉集方程等于0为岩质边坡突变失稳充要力学条件判据;由于滑面处含水量不同,稳定系数小于1,边坡不一定会发生失稳;稳定系数大于1,边坡也不一定稳定。  相似文献   

14.
The partly constructed and excavated power house slopes of Subansiri Lower Hydroelectric Project experienced extensive collapses through complex mode of failure. A detailed study is attempted in this paper to understand the reasons for the failure and assess the stability of the existing constructed slopes using limit equilibrium and FEM solutions and also to propose modified design for rebuilding the slopes. To take into account the uncertainty associated with the rockmass and soil properties, probability and reliability analyses have also been carried out. Based on the field observations and stability analyses of the natural and cut slopes, suitable support systems such as slope flattening with various angles, weldmesh, shotcrete, rockbolts and drainage holes have been considered to meet the stability requirements. In this study, it is demonstrated that the probabilistic approach when used in conjunction with deterministic approach helps in providing a rational solution for quantification of stability in the estimation of risk associated with the power house slope construction.  相似文献   

15.
王军祥  姜谙男 《岩土力学》2015,36(2):393-402
针对岩土工程材料应变软化问题及有限元对其数值计算时切线刚度矩阵负定造成求解困难的问题进行研究。建立了基于Drucker-Prager(D-P)强度准则的岩石弹塑性应变软化本构模型,本构积分算法采用一种完全隐式返回映射算法,它具有无条件稳定和精确的特点,详细论述了如何进行本构模型的程序化求解;考虑弧长法在判断切线刚度矩阵正定性导致效率低的缺点,在弹塑性增量有限元方程的迭代计算中尝试采用Newton-Raphson法和arc-length法(NR-AL法)联合迭代求解的思路,即在结构未达到极限荷载前采用NR迭代法,而当结构接近极限荷载时转换为AL法控制迭代,从而使结构越过峰值点进入软化区直至破坏,NR-AL法汲取了2者迭代求解中具有的优势;利用C++语言对所建应变软化模型的本构求解和弹塑性增量有限元方程迭代求解过程给予程序实现,应用所编程序进行数值计算,分析了D-P理想弹塑性模型、应变软化模型、应变硬化模型计算的应力-应变曲线的区别,同时将应变软化模型计算结果与试验数据进行了对比。研究结果表明:所建应变软化本构模型可以较好地模拟岩石材料的峰后软化特性,能够揭示峰后应变软化特性和破坏机制,同时NR-AL法能够求解由于应变软化造成的负刚度问题,也克服了单独使用弧长法时判断切线刚度矩阵正定性效率低的缺点。  相似文献   

16.

The Rankine earth pressure theory is extended herein to an inclined c? backfill. An analytical approach is then proposed to compute the static passive and active lateral earth pressures for a sloping cohesive backfill retained by a vertical wall, with the presence of wall–soil interface adhesion. The proposed method is based on a limit equilibrium analysis coupled with the method of slices wherein the assumed profile of the backfill failure surface is a composite of log-spiral and linear segments. The geometry of the failure surface is determined using the stress states of the soil at the two boundaries of the mobilized soil mass. The resultant lateral earth thrust, the point of application, and the induced moment on the wall are computed considering global and local equilibrium of forces and moments. Results of the proposed approach are compared with those predicted by a number of analytical models currently adopted in the design practice for various combinations of soil’s frictional angles, wall–soil interface frictional angles, inclined angles of backfill and soil cohesions. The predicted results are also verified against those obtained from finite element analyses for several scenarios under the passive condition. It is found that the magnitude of earth thrust increases with the backfill inclination angle under both the passive and active conditions.

  相似文献   

17.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
岩土材料具有极限应变特征,其值可以通过室内试验或数值模拟方法求得。边坡岩土体主要为剪切破坏,可采用极限剪应变作为材料破坏的判据。事实上,边坡岩土体强度参数劣化并非整体性的,而是一个渐进性局部损伤至整体失稳的过程。本文基于极限应变判据,建立了边坡破坏的动态局部强度折减方法,此方法对边坡中超过极限剪应变值的单元进行强度折减。通过不断折减计算过程中产生的超过极限剪应变值单元,直到坡内超过极限剪应变值的单元贯通,认为边坡整体发生破坏。将该方法应用到实际边坡工程中,计算结果和边坡破坏模式及变形监测数据基本吻合。此方法在分析边坡渐进性破坏及稳定性评价方面具有较好应用前景。  相似文献   

19.
边坡的渐进破坏特征一直以来是边坡计算仿真中的一个难点。实际边坡的破坏很少是一个整体达到极限状态,突然滑动的过程,往往是逐步发展由局部破坏到最终整体失稳,即临界状态小扰动导致的链式多米洛骨牌式失稳。利用颗粒流软件,设计了0.1 m粒径高10 m土坡的数值模型,粒间黏聚力为36 kPa,摩擦系数为0.36。初始模型在重力作用下不会发生破坏,通过单独折减粒间黏聚力到18 kPa使得边坡破坏,监测竖向颗粒组group的变化获取每20 000个时间步的边坡破坏形态,实现200 000个时间步内边坡的渐进破坏过程。边坡总是从局部开始破坏,坡体物质的运移造成次一级破坏,形成最终的近似弧形的滑动面,说明滑体不是整体下滑,不是刚体,不是整体达到极限状态;坡体内应力的变化也不是单调的,有涨有落,均区别于当前极限平衡法中有限条块的刚体假设;滑动面上同时达到极限状态假设,问题本身是静不定的,通过给出条间力的传递方式使之静定可解;整体分析不能考虑破坏的局部化和渐进特征。这说明边坡计算方法的未来在于能反映动力问题和材料破坏特征的离散元方法。  相似文献   

20.
The paper presents results from a computer code, based on limit equilibrium analyses, able to quantify earth pressure coefficients for the internal design of geosynthetic reinforced soil structures and identify the potential failure surfaces. Failure mechanisms assuming bilinear or logarithmic spiral failure surfaces are considered. The influence of the potential failure surface and geosynthetic strength distribution on the earth pressure coefficient is analysed. Required reinforcement tensile strengths calculated by the developed program are compared with values published in the literature. To further evaluate the capabilities of limit equilibrium analyses, the numerical modelling of a geosynthetic reinforced steep slope, designed at ultimate limit state conditions (FS = 1), is also presented. Good agreement was achieved between the potential failure surfaces predicted by limit equilibrium analyses and those obtained with numerical modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号