首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the seismic properties of modern crustal seismicity in the northwestern Sierras Pampeanas of the Andean retroarc region of Argentina. We modelled the complete regional seismic broadband waveforms of two crustal earthquakes that occurred in the Sierra de Velasco on 28 May 2002 and in the Sierra de Ambato on 7 September 2004. For each earthquake we obtained the seismic moment tensor inversion (SMTI) and tested for its focal depth. Our results indicate mainly thrust focal mechanism solutions of magnitudes Mw 5.8 and 6.2 and focal depths of 10 and 8 km, respectively. These results represent the larger seismicity and shallower focal depths in the last 100 years in this region. The SMTI 2002 and 2004 solutions are consistent with previous determinations for crustal seismicity in this region that also used seismic waveform modelling. Taken together, the results for crustal seismicity of magnitudes ≥5.0 in the last 30 years are consistent with an average P-axis horizontally oriented by an azimuth of 125° and T-axis orientation of azimuth 241° and plunge 58°. This modern crustal seismicity and the historical earthquakes are associated with two active reverse faulting systems of opposite vergences bounding the eastern margin of the Sierra de Velasco in the south and the southwestern margin of the Sierra de Ambato in the north. Strain recorded by focal mechanisms of the larger seismicity is very consistent over this region and is in good agreement with neotectonic activity during the last 11,000 years by Costa (2008) and Casa et al. (in press); this shows that the dominant deformation in this part of the Sierras Pampeanas is mainly controlled by contraction. Seismic deformation related to propagation of thrusts and long-lived shear zones of this area permit to disregard previous proposals, which suggested an extensional or sinistral regime for the geomorphic evolution since Pleistocene.  相似文献   

2.
The Yarlung Tsangpo Grand Canyon region is located in the frontal zone of the eastern Himalayan syntaxis, where neo-tectonics and seismicity are intensive and closely related to each other. In the region, two sets of fault structures have developed, striking NNE-NE and NWW-NW, respectively. Investigation shows that they differ markedly in terms of scope, property, active times and intensity. The NWW-NW trending faults are large in size, and most are thrust and thrust strike-slip faults, formed in earlier times. The NEE-NE-strike faults are relatively small in size individually, with concentrated distribution, constituting the NNE-trending shear extensional fault zone, which is relatively younger with evident late Quaternary activities. Strong earthquakes occur mainly in the areas or zones of intensive differential movement of the Himalayas, e.g. along the deep and large fault zones around the crustal blocks. Most earthquakes of M≥7.0 are closely related to tectonics, where large-scale Holocene active faults are distributed with complicated fault geometry, or the faults of multiple directions intersect. Among them, earthquakes of M≥7.5 have occurred on the NW and NE-trending faults with a greater strike-slip component in the fault tectonic zones.  相似文献   

3.
Chengdu fault depression is an important Quaternary basin in the piedmont of Longmenshan mountain.Formation and evolution of the fault depression are entirely controlled by the Longmenshan piedmont fault and the Longquanshan fault.Since the late Quaternary,Chengdu fault depression has been subjected to an NW-SE oriented compression.Many NE or NNE trending faults inside the depression or near its margins show thrust slip,resulting in moderate and strong earthquakes along the piedmont Longmenshan fault,the western slop Longquanshan fault,and Pujiang-Xinjin-Chengdu-Deyang fault.It is indicated that three faults as mentioned above have the potential capability for the occurrence of moderate earthquakes.  相似文献   

4.
南天山及塔里木北缘构造带西段地震构造研究   总被引:4,自引:0,他引:4       下载免费PDF全文
田勤俭  丁国瑜  郝平 《地震地质》2006,28(2):213-223
南天山及塔里木北缘构造带位于帕米尔地区东北侧,地震活动强烈。文中通过地质构造剖面、深部探测资料和地震震源机制解资料,综合研究了该区的地震构造模型。结果认为,该区的构造活动主要表现为天山地块逆冲于塔里木地块之上。天山构造系统包括迈丹断裂及其前缘推覆构造;塔里木构造系统包括深部的塔里木北缘断裂、基底共轭断层和浅部的推覆构造。塔里木北缘断裂是发育于塔里木地壳内部的高角度断裂,其形成原因在于塔里木和天山构造变形方向的差异。塔里木北缘断裂为研究区大地震的主要发震构造,天山推覆构造和塔里木基底断裂系统均具有不同性质的中强地震发震能力  相似文献   

5.
甘加盆地西缘断裂带发现新活动证据   总被引:1,自引:1,他引:0       下载免费PDF全文
甘加盆地位于西秦岭北缘断裂带西端,盆地西缘发育了三条近南北向的断层(东支、中支、西支),表现为西高东低的弧形地貌阶梯带。基于高分辨率卫星遥感影像解译、地质地貌调查、UAV航拍测量、剖面清理与14C测年等工作,对甘加盆地西缘断裂带进行综合研究,发现该断裂带第四纪晚期有新活动。断层新活动在地貌上表现为不同级别的断层陡坎、阶地与洪积台地断错以及冲沟与阶地右旋等特征。断层剖面与擦痕揭示,该断裂带具右旋逆冲性质,断层断错最新地层为全新统。根据测量与测年数据,初步估算甘加盆地西缘断裂带西支全新世中期以来的平均水平右旋滑动速率为0.89 mm/a,平均垂直滑动速率为0.30 mm/a。  相似文献   

6.
While most aspects of subduction have been extensively studied, the process of subduction initiation lacks an observational foundation. The Macquarie Ridge complex (MRC) forms the Pacific-Australia plate boundary between New Zealand to the north and the Pacific-Australia-Antarctica triple junction to the south. The MRC consists of alternating troughs and rises and is characterized by a transitional tectonic environment in which subduction initiation presently occurs. There is a high seismicity level with 15 large earthquakes (M>7) in this century. Our seismological investigation is centered on the largest event since 1943: the 25 MAY 1981 earthquake. Love, Rayleigh, andP waves are inverted to find: a faulting geometry of right-lateral strike-slip along the local trend of the Macquarie Ridge (N30°E); a seismic moment of 5×1027 dyn cm (M w=7.7) a double event rupture process with a fault length of less than 100km to the southwest of the epicenter and a fault depth of less than 20km. Three smaller thrust earthquakes occurred previous to the 1981 event along the 1981 rupture zone; their shallow-dipping thrust planes are virtually adjacent to the 1981 vertical fault plane. Oblique convergence in this region is thus accommodated by a dual rupture mode of several small thrust events and a large strike-slip event. Our study of other large MRC earthquakes, plus those of other investigators, produces focal mechanisms for 15 earthquakes distributed along the entire MRC; thrust and right-lateral strike-slip events are scattered throughout the MRC. Thus, all of the MRC is characterized by oblique convergence and the dual rupture mode. The true best-fit rotation pole for the Pacific-Australia motion is close to the Minster & Jordan RM2 pole for the Pacific-India motion. Southward migration of the rotation pole has caused the recent transition to oblique convergence in the northern MRC. We propose a subduction initiation process that is akin to crack propagation; the 1981 earthquake rupture area is identified as the crack-tip region that separates a disconnected mosaic of small thrust faults to the south from a horizontally continuous thrust interface to the north along the Puysegur trench. A different mechanism of subduction initiation occurs in the southernmost Hjort trench region at the triple junction. newly created oceanic lithosphere has been subducted just to the north of the triple junction. The entire MRC is a soft plate boundary that must accommodate the plate motion mismatch between two major spreading centers (Antarctica-Australia and Pacific-Antarctica). The persistence of spreading motion at the two major spreading centers and the consequent evolution of the three-plate system cause the present-day oblique convergence and subduction initiation in the Macquarie Ridge complex.  相似文献   

7.
Fluid infiltration into fault zones and their deeper-level counterparts, brittle-ductile shear zones, is examined in diverse tectonic environments. In the 2.7 Ga Abitibi greenstone belt, major tectonic discontinuities, with lateral extents of hundreds of kilometres initiated as listric normal faults accommodating rift extension and acted as sites for komatiite extrusion and locally intense metasomatism. During reverse motion on the structures, accommodating shortening of the belt, these transcrustal faults were utilised as a conduit for the ascent of trondhjemitic magmas from the base of the crust and of alkaline magmas from the asthenosphere and for the discharge of thousands of cubic kilometres of hydrothermal fluids. Such fluids were characterised by 18O=+6±2, D=–50±20, 13C=–4±4, and temperatures of 270 to 450°C, probably derived from devolatilisation of crustal rocks undergoing prograde metamorphism. Hydrothermal fluids were more radiogenic (87Sr/86Sr=0.7010 to 0.7040) and possessed higher than did contemporaneous mantle, komatiites or tholeiites, and thus carried a contribution from older sialic basement. A provinciality of87Sr/86Sr and 13C is evident, signifying that fault plumbing sampled lower crust which was heterogeneous at the scale of tens of kilometres. Mineralised faults possess enrichments of large ion lithophile (LIL), LIL elements, including K, Rb, Ba, Cs, B, and CO2, and rare elements, such as Au, Ag, As, Sb, Se, Te, Bi, and W. Fluids were characterised by XCO 20.1, neutral to slightly acidic pH, low salinity 3 wt-%, K/Na=0.1, they carried minor CH4, CO, and N2, and they underwent transient effervescence of CO2 during decompression. Clastic sediments occupy graben developed at fault flexures. The40Ar/39Ar release spectra indicate that fault rocks experienced episodic disturbance on time scales of hundreds of millions of years.At the Grenville front, translation was accommodated along two mylonite zones and an intervening boundary fault. The high-temperature (580°C) and low-temperature (430 to 490°C) mylonite zones, formed in the presence of deep-level crust-equilibrated fluids of metamorphic origin. Late brittle faults contain quartz veins precipitated from fluids with extemely negative 18O (–14 per mil) at 200 to 300°C. The water may have been derived from downward penetration into fault zones of precipitation of low18O on a mountain range induced by continental collision, with uplift accommodated at deep levels by the mylonite zones coupled with rebound on the boundary faults.Archean gneisses overlie Proterozoic sediments along thrust surfaces at Lagoa Real, Brazil; the gneisses are transected by brittle-ductile shear zones locally occupied by uranium deposits. Following deformation at 500 to 540°C, in the presence of metamorphic fluids and under conditions of low water-to-rock ratio, shear zones underwent local intense oxidation and desilication. All minerals undergo a shift of –10 per mil, indicating discharge of meteoric-water-recharged formation brines in the underlying Proterozoic sediments up through the Archean gneisses, during overthrusting; 1000 km3 of solutions passed through these structures. The shear zones and Proterozoic sediments are less radiogenic (87Sr/86Sr=0.720) than contemporaneous Archean gneisses (0.900), corroborating the transport of fluids and solutes through the structure from a large external reservoir.Major crustal detachment faults of Tertiary age in the Picacho Cordilleran metamorphic core complex of Arizona show an upward transition from undeformed granitic basement through mylonitic to brecciated and hydrothermally altered counterparts. The highest tectonic levels are allochthonous, oxidatively altered Miocene volcanics. This transition is accompanied by an increase of 12 per mil in 18O, from +7 to +19, and a 400°C decrease in temperature. Lower tectonic levels acted as aquifers for the expulsion of large volumes of higher-temperature reduced metamorphic fluids and/or evolved formation brines. The Miocene allochthon was influenced by a lower-temperature reservoir inducing oxidative potassic alteration; mixing occurred between cool downward-penetrating thermal waters and the hot, deeper aqueous reservoir.In general, flow regimes in these fault and shear zones follow a sequence, from conditions of high temperature and pressure with locally derived fluids at low water-to-rock ratios, during initiation of the structures, to high fluxes of reduced formation or metamorphic fluids along conduits as the structures propagate and intersect hydrothermal reservoirs. Later in the tectonic evolution and at shallower crustal levels there was incursion of oxidising fluids from near-surface reservoirs into the faults. In general, magmatism, tectonics, and fluid motion are intimately related.  相似文献   

8.
天山全新世活动断裂及古地震研究   总被引:2,自引:0,他引:2  
冯先岳 《内陆地震》1995,9(3):217-226
横亘亚洲腹地的天山山脉近代构造活动十分强烈。规模较大的全新世活动断裂有20多条,多为近东西走向的倾滑型逆断裂,常与活动褶皱相伴生。活动褶皱为无根的断裂扩展褶皱和滑脱褶皱,它的生长是受地下活动的盲断裂所控制,往往是褶皱地震潜在的地区。天山古地震活动遗迹很多,归纳其标志有:多重断层陡坎、古断塞塘、崩积楔、填充楔、推覆楔、地震断错台地和断裂扩展褶皱等。近几年对10条全新世活动断裂进行开挖研究,已取得大地  相似文献   

9.
We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings,seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated,and have revealed the primary features of the thrust-foldnappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are interpreted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, consisting of the lower(root) thrust fault, middle detachment,and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east,which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases,this section of the nappe structure near the city has an earthquake risk of M6.5–7. An earthquake M_S6.6, 60 km east to Urumqi city occurred along the structure in 1965.  相似文献   

10.
In this paper, according to the results of the satellite imagery interpretation and field investigation, we study the active features and the latest active times of the Chuxiong-Nanhua fault, the Quaternary basins formation mechanism, and the relationship between the fault and the 1680 Chuxiong MS6 ¾ earthquake. Several Quaternary profiles at Lvhe, Nanhua reveal that the fault has offset the late Pleistocene deposits of the T2 and T3 terraces of Longchuan river, indicating that the fault was obviously active in late Quaternary. The Chuxiong-Nanhua fault has been dominated by dextral strike slip motion in the late Quaternary, with an average rate of 1.6-2.0mm/a. Several pull apart Quaternary basins of Chuxiong, Nanhua, and Ziwu etc. have developed along the fault. The 1680 Chuxiong MS6 ¾ earthquake and several moderate earthquakes have occurred near the fault. The Chuxiong-Nanhua fault are the seismogenic structure of those earthquakes, the latest fault movement was in the late-Pleistocene, and even the Holocene. In large area, the Chuxiong-Nanhua fault and the eastern Qujiang fault and the Shiping fault composed a set of NW-trending oblique orientation active faults, and the motion characteristics are all mainly dextral strike slip. The motion characteristics, like the red river fault of the Sichuan-Yunnan Rhombic Block southwestern boundary, are concerned with the escaping movement of the Sichuan-Yunnan Rhombic Block.  相似文献   

11.
孟连断裂位于云南省西南部与缅甸交界地带,是川滇菱形块体南部一条规模较大的活动断裂带,总体呈NEE向延伸,长约90km,走向N70°E,倾向NW,倾角50°~60°,断裂晚第四纪活动较强烈,以左旋走滑为主,兼具有倾滑特征。通过卫星影像解译和野外调查发现,其断错地貌主要以线性断层崖为主,高度不等,其次为断层谷地、断层沟槽和断层垭口地貌,冲沟及阶地的水平位移多在几十米至几百米之间。在孟连县城西侧开挖的大型探槽中,揭露出多条断层,通过分析剖面和14C测年结果认为,孟连断裂晚第四纪发生过4次古地震事件,除最早一次年代较久远以外,其他3次均发生在全新世中晚期以来,最近一次古地震事件的年代为(1 860±30)~(1 090±30)a B.P.。  相似文献   

12.
In this study, surface and subsurface geologicaldata are integrated with seismological data in orderto reconstruct a structural model for theSeptember-October 1997 Colfiorito earthquakes. Theseismic sequence is mainly controlled by two majorSW-dipping normal faults outcropping in the area (M.Pennino-M. Prefoglio and M.Civitella-Preci faults).The activated faults detach, at depth, on a commoneast-dipping low-angle normal fault, the AltotiberinaFault (AF). The AF is interpreted as the base of anactive hangingwall block which is stretching towardNE. The decrease in maximum depth of the earthquakefoci from the Colfiorito area (about 8 km) to theSellano area (about 6 km), suggested by the available seismological data, could be related to the eastward-deepening geometry of the AFdetachment. The seismic fault planes, inferred fromfocal mechanisms and aftershock distributions, arecharacterised by a moderate dip (average 40°)toward SW, which appears to be independent from thepresence of pre-existing thrust planes.  相似文献   

13.
Through study on trenches, analysis of recurrence characteristics and recurrence interval cluster/gap of strong earthquakes along the major active faults on the northern border of Ordos block, we found 62 paleoearthquakes that occurred in the late Quaternary, including 33 earthquakes occurring in the Holocene. The recurrence characteristics of the paleoearthquakes are different at three levels, segments, faults, and fault zones. The strong seismic sequence on the independent segments is mostly characterized by long- and short-interval recurrences, while that on the faults and in fault zone is characterized clearly by random and cluster recurrences. Results of the moving window test indicate that the probabilities of "temporal cluster or gap", caused by random coincidence as opposed to intersegment contagion, are 64% and 70% for the Serteng piedmont fault and for the south-border fault of Wula Mountains, respectively, no clear interaction among the segments of each fault; while the probability is 26.8% for the whole fault zone, suggesting a clear interaction among the faults of this fault zone. These recurrence characteristics may imply an effect of the entire block motion on the recurrence of strong earthquakes. Moreover, the elapsed time for the Wujumeng Pass-Dongfeng Village segment of Serteng piedmont fault and the Tuzuo Banner-Wusutu and the Hohhot segments of Daqingshan piedmont fault has exceeded the average recurrence interval, hence these three segments may be the possible places for future strong earthquakes.  相似文献   

14.
A structural study in the SW section of the Colorado River delta using seismic reflection data is presented. The study area is located along the Cerro Prieto transform fault, which extends from the northern Gulf of California through the Mexicali Valley and is an active fault within the Pacific-North American plate boundary zone. The research was supported by a database of five seismic profiles with a total length of 215 km, collected in the early 80’s by Petróleos Mexicanos. The results show a high density of faults, most of which are buried by sediments. Within the Cerro Prieto fault zone, several faults were identified, such as: Palmas, Mesa, and Pangas Viejas, until now unknown. In addition, even though the Indiviso fault was investigated and superficially identify prior to this work, herein mapped at depth. West of the Cerro Prieto fault zone lies the Las Tinajas basin, bound by the Dunas and Saldaña faults and by the Montague basin to the southeast. The deformation zone along the plate boundary is 18-km-wide, stretching from the Cerro Prieto fault in the east to the Pangas Viejas fault in the west. The orientations of the faults are NW–SE, and if projected from the southern side of the Sierra Cucapah southward, the faults tend to join the Cerro Prieto fault. In the Las Tinajas basin, the acoustic basement is deeper than 5,000 m. Some of the largest vertical displacements generated by the 2010 7.2-Mw El Mayor-Cucapah earthquake occurred southeast of the epicenter and coincided with the location of the Pangas Viejas Fault, which is buried by sediments. Before this event, seismic activity was very low, and no structures were known in the area. In this paper, we demonstrate that there are at least seven major faults that may now pose a high seismic hazard.  相似文献   

15.
逆冲构造带的分段性研究是评价该类发震构造地震危险性的基础工作。荥经-马边-盐津逆冲构造带是青藏高原东南边缘重要的NW向强震构造带,该构造带以逆冲错动为主要活动形式,其组合形式与逆冲强度存在南北差异。通过NE向横向断裂的构造地貌分析,发现横向断裂以右旋走滑活动为主,兼有倾滑活动。根据其与纵向断裂的交接关系,将横向断裂概括为横向分割断裂、横向撕裂断裂和横向转换断裂3种类型,讨论了3类横向断裂在逆冲构造带分段中所起的不同作用,进而将荥经-马边-盐津逆冲构造带分为独立的3段,并分析了各段的地震活动特征。研究表明,荥经-马边-盐津逆冲构造带以横向断裂为标志的3分段特点,既体现了段与段之间断裂活动强度、地震破裂强度与步调的差异,又体现了段内地震破裂步调的一致性,表明横向断裂在一定程度上控制了逆冲构造带的破裂分段,只是横向断裂的类型不同,其所起的作用也不同  相似文献   

16.
本文根据野外调查资料及重力、航磁等资料,对柴达木盆地及其邻区的主要活动断裂的大地构造位置、产状、深度和第四纪活动特点等进行了分析研究,並讨论了这些断裂与地震活动的关系。这一地区的地震活动强度与断裂深度有关,具左旋运动特征的全新世近东西向活断层与强地震活动的关系最为密切。  相似文献   

17.
明龙山-上窑断裂是一条逆走滑性质的第四纪活动断裂,长约68km,走向300°-315°。本文在卫星影像解译的基础上,通过野外调查,确定了该断裂的几何展布和分段特征,初步将断裂分为明龙山、上窑、凤阳山3条次级断裂段。通过对断裂经过处的采石场进行详细追索,我们对典型断层剖面进行了描述并采集了断层泥ESR样品,得到的测年结果为(243±24)ka和(126±15)ka,由于淮南地区是典型的中等强度地震活动区,断层晚第四纪以来活动强度较弱,这些测年结果虽不能代表断层最后一次微弱活动的时代,但可以确定断层最后一次强烈活动时代为中更新世晚期至晚更新世早期。结合前人对1831年凤台MS 6?级地震极震区位置、等震线形态研究及本文对极震区附近断裂展布和活动性的对比分析,我们认为明龙山-上窑断裂为本次地震发震构造的可能性最大。  相似文献   

18.
The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50–60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.  相似文献   

19.
Based on geometric structure,active strength,and maximum seismic rupture length along the fault in the late Quaternary or Holocene,this paper presents the segmentation of main active faults in Sichuan Province and uses the recurrence probability model to predict the recurrence probabilities of strong earthquakes along each segment during next 30 years.The results indicate that earthquakes with M=7.0 or greater may happen along Qiajiao segment,Qianning segment,and Selaha segment of Xianshuihe fault zone,the segment from Xichang to Mianning and Yejidong segment of Anninghe fault zone; earthquakes with M=6.0 or greater may happen along the segment from Maowen to Caopuo of Longmenshan fault zone and Xiaoyanjing segment of Anninghe fault zone.  相似文献   

20.
本文根据攀西地区活断层长期滑动速率及历史上最大地震震级上限,把攀西地区的活断层划分为A、B、C三级,并对区内几条主要活断层的近代活动特征进行了较全面的研究。指出第四纪断裂活动沿断裂带在空间上和时间上是有明显的分段性和不均匀性,断裂上的位移是以一种地震构造上的脉冲形式出现的,地震与晚更新世、全新世和现代断裂活动在空间上和成因上有密切的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号