首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究非临界纬度上参量次谐频不稳定(parametric subharmonic instability,PSI)过程生成的近惯性波(near-inertial wave,NIW),本文基于国家重点研发项目的 准实时传输深海潜标资料,对内波速度谱、近惯性流速和动能、D2-f(半日频减惯性频)流速和动能、半日内潮流速和...  相似文献   

2.
In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.  相似文献   

3.
海洋是多尺度强迫-耗散系统,机械能主要在大尺度输入,在小尺度耗散。在大、中尺度运动的能量向小尺度湍流传递过程中,内波扮演着重要角色。内波的生成和破碎可打破海洋动力平衡,而在陆架区,内波(主要是内孤立波)的浅化演变与耗散则是驱动湍流混合的关键过程。通过长期的理论、观测与数值模拟研究,目前已认识到内波浅化过程中主要发生如下演变:波形调制、极性转变、裂变、破碎与耗散。相较于直接发生破碎,浅化演变过程中的裂变及其引发的剪切不稳定和对流不稳定是内孤立波在陆架区的主要耗散机制,显著调制陆架区的跃层混合。从能量串级的角度讲,内孤立波浅化裂变为动力不稳定的高频内波是潮能串级的重要通道。本文简要回顾南海北部陆架区内波的研究历史,并着重总结内波在陆架区演变与耗散机制的研究进展。  相似文献   

4.
Using a two-dimensional primitive equation model, we examine nonlinear responses of a semidiurnal tidal flow impinging on a seamount with a background Garrett-Munk-like (GM-like) internal wavefield. It is found that horizontally elongated pancake-like structures of high vertical wavenumber near-inertial current shear are created both in the near-field (the region over the slope of the seamount) and far-field (the region over the flat bottom of the ocean). An important distinction is that the high vertical wavenumber near-inertial current shear is amplified only at mid-latitudes in the far-field (owing to a parametric subharmonic instability (PSI)), whereas it is amplified both at mid-and high-latitudes (above the latitude where PSI can occur) in the near-field. In order to clarify the generating mechanism for the strong shear in the near-field, additional numerical experiments are carried out with the GM-like background internal waves removed. The experiments show that the strong shear is also created, indicating that it is not caused by the interaction between the background GM-like internal waves and the semidiurnal internal tides. One possible explanation is proposed for the amplification of high vertical wavenumber near-inertial current shear in the near-field where tide residual flow resulting from tide-topography interaction plays an important role in transferring energy from high-mode internal tides to near-inertial internal waves.  相似文献   

5.
本研究通过分析布放在南海北部的着陆器流速数据,研究一支蓝移的近惯性振荡信号,发现该信号可以传到600m水深以下,持续时间为11月3—16日。该信号的最大的东向流速为0.133m/s,最大南向流为0.124m/s。谱分析发现垂向流速呈现出5个不同的流核,最强流核发生在600—650m位置。近惯性能量下传速度为67±5m/d,从600m下传到1000m的位置能量耗散18%。经验正交函数(empiricalorthogonalfunction,EOF)分解结果显示,这次近惯性振荡信号开始是第一模态占主导,随后变成高阶模态为主导的形式。由于不知道其信号生成的源头,所以无法确定近惯性振荡形成原因,结合前人的研究结果,可以排除台风引起此次近惯性振荡信号的生成。卫星的海表高度异常显示,此时的正涡度有利于此次近惯性振荡发生蓝移特征。  相似文献   

6.
Near-inertial motions contribute most of the velocity shear in the upper ocean. In the Bay of Bengal (BoB), the annual-mean energy flux from the wind to near-inertial motions in the mixed layer in 2013 is dominated by tropical cyclone (TC) processes. However, due to the lack of long-term observations of velocity profiles, our knowledge about interior near-inertial waves (NIWs) as well as their shear features is limited. In this study, we quantified the contribution of NIWs to shear by integrating the wavenumber-frequency spectra estimated from velocity profiles in the upper layers (40?440 m) of the southern BoB from April 2013 to May 2014. It is shown that the annual-mean proportion of near-inertial shear out of the total is approximately 50%, and the high contribution is mainly due to the enhancement of the TC processes during which the near-inertial shear accounts for nearly 80% of the total. In the steady monsoon seasons, the near-inertial shear is dominant to or at least comparable with the subinertial shear. The contribution of NIWs to the total shear is lower during the summer monsoon than during the winter monsoon owing to more active mesoscale eddies and higher subinertial shear during the summer monsoon. The Doppler shifting of the M2 internal tide has little effect on the main results since the proportion of shear from the tidal motions is much lower than that from the near-inertial and subinertial motions.  相似文献   

7.
南海西北陆坡区内潮与近惯性内波观测研究   总被引:2,自引:2,他引:0  
梁辉  郑洁  田纪伟 《海洋学报》2016,38(11):32-42
通过对2006年南海西北部海域近3个月的全水深流速观测资料的分析,研究了该海区正压潮、内潮及近惯性内波的时空分布特征。结果表明,全日内潮明显强于半日内潮,且最大潮流均出现在海洋上层;内潮的主轴方向基本沿东南-西北方向,近似与局地等深线垂直;内潮能量显示出明显的时间长度约为半月的大小潮调制周期;全日内潮的coherent部分占全日内潮能量的70%,而半日内潮的coherent部分占半日内潮能量的53%;进一步研究发现半日内潮主要由第一模态主导,而全日内潮第三模态能量占总能量的比例仅次于第一模态且量值上与之相当;强风过程可激发出强的近惯性运动,暖涡使得近惯性内波能量更有效地向海洋深层传播,冷涡则不利于近惯性内波能量向下传播。  相似文献   

8.
On the basis of the time series observations from a temperature chain and an acoustic Doppler current profiler on the continental shelf of the northern South China Sea, a sequence of internal solitary waves (ISWs) and background waves (BWs, including internal tides and near-inertial waves) on the continental shelf were captured simultaneously after the transit of Typhoon Neast in October 2011. These measurementsprovided a unique opportunity to explore the influence of BWs on the ISWs. The BWs appeared a conversion on the current strength and vertical mode structure during the observational period. The BWs were dominated by weak and mode-one waves before October 2 and then turned to strong and high-mode waves after that time. Meanwhile, the ISWs displayed different wave structures before and after October 2, which was closely related to BWs' changes. According to the current profiles of BWs, the high-mode wave structure with strong current could significantly strengthen the vertical shear of ISWs in the near-surface layer and promote the breaking of ISWs, and thus it may play an important role in affecting the background current condition.  相似文献   

9.
何英  汪嘉宁  王凡 《海洋与湖沼》2023,3(3):679-688
验证基于GM(Garret-Munk)大洋内波普适谱的细尺度参数化方案在不同海域的适用性,对于湍流混合研究来说非常重要。包含背景GM内波场的高分辨率数值模式被用于评估细尺度参数化方案在背风波生成源地处的适用性。细尺度参数化方案主要包括基于剪切的G89 (Gregg 1989)方案、基于应变的W93 (Wijesekera 1993)方案、基于剪切和应变的GHP (Gregg-Henyey-Polzin)方案以及对GHP方案中的频率矫正项作出变换的IH (Ijichi-Hibiya)方案。计算结果显示,背风波的生成伴随着海底上方近惯性内波的增强,使得内波场的动能与势能的比值相较于GM内波场偏大。在这种情况下,基于剪切的G89方案会因为高估内波场的总能量而高估耗散率。反之,基于应变的W93方案会因为低估内波场的总能量而低估耗散率。计算结果还显示,已经考虑了内波谱变形的GHP方案仍然会高估耗散率,但IH方案能比较准确地估算耗散率。  相似文献   

10.
继第部分之后研究了惯性内波和近惯性内波由f~的作用所致的剪切不稳定引起的破碎机制。物理上,该机制很象存在由风应力所致薄表面涡旋漂流层时表面波的破碎与饱和过程。惯性内波和近惯性内波的破碎产物与小尺度湍流一起形成了混合块,它与Gregg等人(1986)的持久混合观测结果一致。依据Thorpe(1973)实验的结果作者提出了一个估计湍流动能耗散率和消衰时间的方法。结果表明,在剪切不稳定中近惯性内波在湍动耗散中起了关键作用,而惯性内波引起非常弱的湍动耗散。使用内波能量谱的标准总能量密度估计出的近惯性内波的耗散率和消衰时间与PATCHEX测量结果非常一致。文中还讨论了几个与此破碎机制有关的问题。  相似文献   

11.
On the basis of the theoretical research results by the author and the literature published up to date, the analysis and the justification presented in this paper show that the breaking products of oceanic internal waves are not only turbulence, but also the fine-scale near-inertial internal waves (the oceanic reversible finestructure) for inertial waves and the internal solitary waves for internal tides respectively. It was found that the oceanic reversible finestructure may be induced by the effect of the horizontal component f (f = 2Ωcosφ) of the rotation vector on inertial waves. And a new instability of the theoretical shear and strain spectra due to the effect of f occurs at critical vertical wavenumber β c ≈ 0.1 cpm. It happens when the levels of shear and strain of the reversible finestructure are higher than those of inertial waves, which is induced by the effect of f along an "iso-potential-pycnal" of internal wave. If all breaking products of internal waves are taken into account, the average kinetic energy dissipation rate is an order of magnitude larger than the values of turbulence observed by microstructure measurements. The author’s theoretical research results are basically in agreement with those observed in IWEX, DRIFTER and PATCHEX experiments. An important impersonal fact is that on the mean temporal scale of thermohaline circulation these breaking products of internal waves exist simultaneously with turbulence. Because inertial waves are generated by winds at the surface, and internal tides are generated by strong tide-topography interactions, the analysis and justification in this paper support in principle the abyssal recipes Ⅱ:energetics of tidal and wind mixing by Munk & Wunsch in 1998, in despite of the results of microstructure measurements for the turbulent kinetic energy dissipation rate and the diapycnal turbulent eddy diffusivity.  相似文献   

12.
The near-inertial waves (NIWs) are important for energy cascade in the ocean. They are usually significantly reinforced by strong winds, such as typhoon. Due to relatively coarse resolutions in contemporary climate models, NIWs and associated ocean mixing need to be parameterized. In this study, a parameterization for NIWs proposed by Jochum in 2013 (J13 scheme), which has been widely used, is compared with the observations in the South China Sea, and the observations are treated as model outputs. Under normal conditions, the J13 scheme performs well. However, there are noticeable discrepancies between the J13 scheme and observations during typhoon. During Typhoon Kalmaegi in 2014, the inferred value of the boundary layer is deeper in the J13 scheme due to the weak near-inertial velocity shear in the vertical. After typhoon, the spreading of NIWs beneath the upper boundary layer is much faster than the theoretical prediction of inertial gravity waves, and this fast process is not rendered well by the J13 scheme. In addition, below the boundary layer, NIWs and associated diapycnal mixing last longer than the direct impacts of typhoon on the sea surface. Since the energy dissipation and diapycnal mixing below the boundary layer are bounded to the surface winds in the J13 scheme, the prolonged influences of typhoon via NIWs in the ocean interior are missing in this scheme. Based on current examination, modifications to the J13 scheme are proposed, and the modified version can reduce the discrepancies in the temporal and vertical structures of diapycnal mixing.  相似文献   

13.
ADCP measurements of the velocity structure in the permanent thermocline at two locations over the continental slope in the Bay of Biscay are presented. The vertical variation of the contribution of the inertia-gravity waveband to the kinetic energy, vertical motion, and current shear are analysed. The semi-diurnal tides together with near-inertial waves appear to provide over 70% of the high-frequency kinetic energy (>1/3 cpd). Over the vertical range of the ADCP observations the phase of the harmonic M2 tide changes up to 155°, while the kinetic energy varies in the vertical by a factor of 3.8, showing the importance of the contribution of internal waves to the observed tidal motion. Both semi-diurnal internal tidal waves and near-inertial waves have a vertically restricted distribution of the variance of the horizontal and vertical velocity, as in internal wave beams. The short-term 14-day averaged amplitude and phase lag of the M2 tide shows large temporal changes, with a characteristic 40–45 day time scale. These changes are probably related to variations in generation sites and propagation paths of the internal tide, because of changes in the temperature and salinity stratification due to the presence of meso-scale eddies. The relatively large shear in the inertia-gravity wave band, mainly at near-inertial frequencies, supports low-gradient Richardson numbers that are well below 1 for nearly half of the time. This implies that the large shear may support turbulent mixing for a large part of the time.  相似文献   

14.
海洋中的跨等密度面湍流混合对于热量和淡水输送、翻转环流以及全球气候变化都有重要影响,理解跨等密度面湍流混合的变化对于改进气候模式模拟和预测大尺度海洋环流的能力具有重要作用.基于细尺度参数化方法,本文利用黑潮延伸体区的一个长期潜标K7观测,对跨等密度面湍流混合的次季节变化进行了分析.结果 表明,在2004年6~9月,30...  相似文献   

15.
Using the “Eikonal Approach” (Henyey et al., 1986), we estimate energy dissipation rates in the three-dimensional Garrett-Munk internal wave field. The total energy dissipation rate within the undisturbed GM internal wave field is found to be 4.34 × 10−9 W kg−1. This corresponds to a diapycnal diffusivity of about 0.3 × 10−4 m2s−1, which is less than the value 10−4 m2s−1 required to sustain the global ocean overturning circulation. Only when the high vertical wavenumber, near-inertial current shear is enhanced can diapycnal diffusivity reach ∼10−4 m2s−1. It follows that the energy supplied at low vertical wavenumbers and low frequencies is efficiently transferred to high vertical wavenumbers and near-inertial frequencies in the mixing hotspots in the real ocean.  相似文献   

16.
基于2014年8-9月南海北部东沙群岛附近海域两个临近站位(站位A,20.736°N,117.745°E,水深1 249 m;站位B,20.835°N,117.56°E,水深848 m)的潜标数据,研究了台风过境所激发的近惯性振荡的特征,分析了中尺度暖涡对近惯性频率的调制及其对近惯性动能分布和传播的影响。站位A(B)142(175) m以浅,近惯性频率由0.710 1(0.713 3)周/d红移至0.659 2周/d,频率减小了7.2%(7.6%),观测结果与两个站位所处的背景涡度相吻合。中尺度暖涡改变了水体层结状态,两个站位的近惯性动能在不同层结中被改变了0.5~3倍。水体层结对能量的折射作用使得站位B的近惯性动能在深度158~223 m之间衰减较少,而站位A的近惯性动能则随着深度的增加快速减小。站位A和站位B近惯性内波的垂向群速度分别约为15.2 m/d和14.1 m/d。如果忽略近惯性动能的水平辐散,近惯性内波的垂向传播分别造成了两个站位垂向上约47%和38%的近惯性动能衰减。  相似文献   

17.
Inertial oscillations as deep ocean response to hurricanes   总被引:1,自引:0,他引:1  
We discuss the deep ocean response to passing hurricanes (aka typhoons), which are considered as generators of near-inertial, internal waves. The analysis of data collected in the northwestern parts of the Pacific and Atlantic oceans in the hurricane season permit us to assess the deep ocean response to such a strong atmospheric forcing. A large number of moorings (more than 100) in the northwestern Pacific have allowed us to characterize the spatial features of the oceanic response to typhoons and the variable downward velocity of near-inertial wave propagation. The velocity of their downward propagation varies in the range 1–10 m/hour. It is higher in the regions of low stratification and high anticyclonic vorticity. The inertial oscillations generated by a hurricane last for 10–12 days. The mean anticyclonic vorticity in the region increases the effective frequency of inertial oscillations by 0.001–0.004 cyc/hour.  相似文献   

18.
基于锚碇观测资料,本文分析了南海西北部陆坡区上层海洋对台风“杜苏芮”的动力学和热力学响应特征。在动力学响应方面,台风“杜苏芮”期间上层流速显著增强,混合层纬向流速可达1.20 m/s;“杜苏芮”经过后上层海水运动以近惯性振荡为主(流向顺时针旋转周期在36~40 h之间)。近惯性能量在垂向分布上存在两个高值中心,分别位于混合层和温跃层深度上。近惯性能量耗散过程的e折时间尺度约为3.7 d,我们认为能量的向下传播在局地近惯性能量衰减过程中起主要作用。对能量谱的分析表明,“杜苏芮”作用期间近惯性频率能量相对于其作用前增大了约29.4倍,而全日和半日频率(K1和M2)能量有所减弱。此外,能量谱显示近惯性频率存在明显的“蓝移”现象,即对于纬向和经向流速分量在400 m以浅平均的近惯性振荡频率分别为1.167 f0和1.170 f0(f0为局地惯性频率)。蓝移与近惯性内波的向下传播及正的相对涡度的输入有关。在热力学响应方面,上层海洋在台风的搅拌作用下,40~250 m深度均出现较小增温,最大增温幅度接近1°C;此外70 m以浅盐度的降低可能与台风过境时的降水相关,而Ekman抽吸引起的上升流则可能对70~100 m深度盐度的升高具有重要作用。  相似文献   

19.
With observational data from three Acoustic Doppler Current Profiler (ADCP) moorings, we detected strong near-inertial oscillations (NIO) in the continental shelf region of the northern South China Sea in July 2008. The amplitude of the near-inertial current velocity is much greater than that of diurnal and semi-diurnal tides. The power of the NIOs is strongest in the intermediate layer, relatively weak in the surface layer, and insignificant in the near-bottom layer. The spectral analysis indicates that the NIOs have a peak frequency of 0.0307 cph, which is 2% lower than the local inertial frequency, i.e., a red-shift. The near-inertial wave has an upward vertical phase velocity, which involves a downward group velocity and energy flux. The estimated vertical phase velocity is about 43 m day−1, corresponding to a vertical wave length of about 58 m. The horizontal scale of the NIOs is at least hundreds of kilometers. This NIO event lasted for about 15 days after a typhoon’s passage. Given the northeastward background flow with significant horizontal shear, both Doppler shift and shear flow modulation mechanisms may be responsible for the red-shift of the observed NIOs. For the shear flow mechanism, the observed negative background vorticity and the corresponding effective Coriolis frequency reduce the lower limit of admissible frequency band for the NIOs, causing the red-shift. Meanwhile, the mooring area with the broadened frequency band acts as a wave-guide. The trapping and amplification effects lead to the relatively long sustaining period of the observed NIOs.  相似文献   

20.
Continuous observation in late April 2005 on the northwestern shelf of the South China Sea reveals vigorous strong currents, the maximum velocity of which exceeds 3.8 m/s. The strong currents occurred around spring tide period, when the internal tide waves were also expected to be vigorous. Analysis shows that the major peaks of the current power spectrum are in low frequency band. Using a numerical method applied to the actual ocean stratification, we find that the amplitude profiles of the strong current are similar to that of the currents induced by some low-mode internal waves (at diurnal or semi-diurnal frequency). It indicates that the temporal and spatial features of strong currents were possibly induced by low frequency internal waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号