首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In situ experiments using isotopically labeled mercury species (199Hg(II) and Me201Hg) are used to investigate mercury transformation mechanisms, such as methylation, demethylation and reduction, in coastal and marine surface waters of the Mediterranean Sea. The aim of this work is to assess the relative contribution of photochemical versus biological processes to Hg transformation mechanisms. For this purpose, potential transformation rates measured under diurnal and dark incubation conditions are compared with major biogeochemical parameters (i.e. hydrological and biological data) in order to obtain the relative contribution of various biotic and abiotic mechanisms in both surface (high light) and bottom (low light) waters of the euphotic zone. The results demonstrate that coastal and marine euphotic zones are significant reactors for all Hg transformations investigated (i.e. methylation, demethylation, reduction). A major outcome demonstrates that Hg methylation is taking place in oxic surface seawater (0.3–6.3% day− 1) and is mainly influenced by pelagic microorganism abundance and activities (phyto- and bacterioplankton). This evidences a new potential MeHg source in the marine water column, especially in oligotrophic deep-sea basins in which biogeochemistry is mostly governed by heterotrophic activity. For coastal and marine surface waters, although MeHg is mainly photochemically degraded (6.4–24.5% day− 1), demethylation yields observed under dark condition may be attributed to microbial or chemical pathways (2.8–10.9% day− 1). Photoreduction and photochemical reactions are the major mechanisms involved in DGM production for surface waters (3.2–16.9% day− 1) but bacterial or phytoplanktonic reduction of Hg(II) cannot be excluded deeper in the euphotic zone (2.2–12.3% day− 1). At the bottom of the euphotic zone, photochemical processes are thus avoided due to the attenuation of UV-visible sunlight radiation allowing biotic processes to be the most significant. These results suggest a new potential route for Hg species cycling in surface seawater and especially at the maximum biomass depth located at the bottom of the euphotic zone (i.e. maximum chlorophyll fluorescence). In this environment, DGM production and demethylation mechanisms are thus probably reduced whereas Hg methylation is enhanced by autotrophic and heterotrophic processes. Experimental results on mercury species uptake during these investigations further evidenced the strong affinity of MeHg for biogenic particles (i.e. microorganisms) that correspond to the first trophic level of the pelagic food web.  相似文献   

2.
Species-specific enriched stable isotopes have been used to study mercury transformations (methylation, demethylation and volatilization) in estuarine sediments under different environmental conditions (both biotic and abiotic and oxic and anoxic). These experiments have demonstrated the potential for the isotopically enriched species in combination with highly sensitive measurement methods (ICP MS) to facilitate the study of mercury speciation and reactivity. Sediments (sterilized and nonsterilized) were spiked with both isotopically enriched inorganic (199Hg) and monomethylmercury (MM201Hg) at environmental levels to avoid perturbing the system and incubated under both aerobic and anaerobic conditions. The formation of MM199Hg and the degradation of MM201Hg were measured simultaneously during time series experiments by capillary gas chromatography-inductively coupled mass spectrometry. Specific methylation and demethylation rate constants (Km and Kd) were calculated. Results clearly showed that methylmercury levels in sediments are controlled by competing and simultaneous methylation and demethylation reactions. Operating conditions, likely to drastically modify the reactivity of the media, were of primary importance to assess the relative significance of each mechanism. In estuarine sediments, mercury methylation was enhanced under anaerobic nonsterile conditions, whereas other environmental conditions were either less favorable for monomethylmercury production or more effective for its degradation. The production of total gaseous mercury was found to be minimal, although it could be demonstrated that it was related to the fate and transformation of methylmercury.  相似文献   

3.
The objective of this study was to investigate the effects of resuspension on the fate and bioaccumulation of mercury (THg) and methylmercury (MeHg) in shallow estuarine environments, using mesocosms. Two 4-week experiments were conducted in July (Experiment 1) and October (Experiment 2) of 2001 with Baltimore Harbor sediments. Hard clams, Mercenaria mercenaria, were introduced into sediments for Experiment 2. Tidal resuspension (4 h on and 2 h off cycles) was simulated, with 3 replicate tanks for each treatment—resuspension (R) and non-resuspension (NR). Sediment cores were collected during the experiments for THg, MeHg, organic content and AVS analyses, and for the determination of methylation/demethylation using Hg stable isotopes (199Hg(II) and CH3199Hg(II)). Zooplankton samples were collected once a week while clams were taken before and after Experiment 2 for THg and MeHg analyses. Our results suggest that the interplay between Hg methylation and MeHg degradation determines the overall MeHg pool in sediments. Sediment resuspension does not appear to directly impact the Hg transformations but can lead to changes in the association to Hg binding phases, influencing Hg methylation. The bioaccumulation results indicate that sediment resuspension can play an important role in transferring sediment MeHg into organisms.  相似文献   

4.
Synthesis of metallothionein (MT) as a possible mechanism by which Fundulus heteroclitus adapts to heavy metal pollution has been investigated in relation to responses to methylmercuric chloride (meHg) and HgCl2(Hg2+) at different life stages.Clutches of embryos from unpolluted sites exhibit teratogenic responses to a standard dose of meHg or of Hg2+ which range from little or no effect (tolerant) to severely affected or almost complete inhibition of development (susceptible). At the time of hatching, untreated embryos from tolerant clutches had twice as much of a protein which co-migrates in SDS-PAGE gels with Fundulus MT as do those of susceptible clutches. This difference could be a mechanism for conveying tolerance to Hg2+ and also to meHg if demethylation occurs. However, eggs at the time of deposition had virtually no MT, suggesting that the protein is synthesized too late to provide tolerance in the early stages of development which are critical in the etiology of malformations. Treatment of embryos with non-teratogenic doses of either meHg or Hg2+ did not increase the amount of MT-like protein. This may indicate that the thionein gene is already fully active, and would also explain observations that Hg2+ pretreatment of embryos does not enhance tolerance to Hg2+ in the larval stage.MT, isolated from livers of Hg2+- or Cu2+-dosed or control adults, is associated with Cu and Zn but not with Hg, although it can bind Hg2+in vitro. Fundulus, like other fish, methylates much (ca. 75 %) of its Hg burden, and meHg is considered by some not to react with MT. Fundulus liver has its Hg burden distributed between homogenate sediment (25 %), the cytosol (60 %) and the remainder in lipid. The liver responds to Hg2+ treatment by increasing lipid content. This may allow sequestration of some lipid-soluble meHg. Of the cytosolic Hg, most is associated with larger proteins and some (ca. 25 %) is dialyzable.These data suggest that metallothionein is not a significant factor in Hg tolerance in Fundulus adults, and has a questionable role in embryonic and larval tolerance to Hg2+ and none to the more toxic meHg.  相似文献   

5.
Methylmercury (MeHg) concentration and production rates were studied in bottom sediments along the mainstem of Chesapeake Bay and on the adjoining continental shelf and slope. Our objectives were to 1) observe spatial and temporal changes in total mercury (HgT) and MeHg concentrations in the mid-Atlantic coastal region, 2) investigate biogeochemical factors that affect MeHg production, and 3) examine the potential of these sediments as sources of MeHg to coastal and open waters. Estuarine, shelf and slope sediments contained on average 0.5 to 1.5% Hg as MeHg (% MeHg), which increased significantly with salinity across our study site, with weak seasonal trends. Methylation rate constants (kmeth), estimated using enriched stable mercury isotope spikes to intact cores, showed a similar, but weaker, salinity trend, but strong seasonality, and was highly correlated with % MeHg. Together, these patterns suggest that some fraction of MeHg is preserved thru seasons, as found by others [Orihel, D.M., Paterson, M.J., Blanchfield, P.J., Bodaly, R.A., Gilmour, C.C., Hintelmann, H., 2008. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem. Environmental Pollution 154, 77] Similar to other ecosystems, methylation was most favored in sediment depth horizons where sulfate was available, but sulfide concentrations were low (between 0.1 and 10 μM). MeHg production was maximal at the sediment surface in the organic sediments of the upper and mid Bay where oxygen penetration was small, but was found at increasingly deeper depths, and across a wider vertical range, as salinity increased, where oxygen penetration was deeper. Vertical trends in MeHg production mirrored the deeper, vertically expanded redox boundary layers in these offshore sediments. The organic content of the sediments had a strong impact on the sediment:water partitioning of Hg, and therefore, on methylation rates. However, the HgT distribution coefficient (KD) normalized to organic matter varied by more than an order of magnitude across the study area, suggesting an important role of organic matter quality in Hg sequestration. We hypothesize that the lower sulfur content organic matter of shelf and slope sediments has a lower binding capacity for Hg resulting in higher MeHg production, relative to sediments in the estuary. Substantially higher MeHg concentrations in pore water relative to the water column indicate all sites are sources of MeHg to the water column throughout the seasons studied. Calculated diffusional fluxes for MeHg averaged  1 pmol m− 2 day− 1. It is likely that the total MeHg flux in sediments of the lower Bay and continental margin are significantly higher than their estimated diffusive fluxes due to enhanced MeHg mobilization by biological and/or physical processes. Our flux estimates across the full salinity gradient of Chesapeake Bay and its adjacent slope and shelf strongly suggest that the flux from coastal sediments is of the same order as other sources and contributes substantially to the coastal MeHg budget.  相似文献   

6.
A combination of CTD casts, discrete bottle sampling and in situ voltammetric microelectrode profiling was used to examine changing redox conditions in the water column at a single station south of the Bay Bridge in the upper Chesapeake Bay in late July/early August, 2002–2005. Short-term (2–4 h) fluctuations in the oxic/suboxic/anoxic interface were documented using in situ voltammetric solid-state electrodes. Profiles of dissolved oxygen and sulfide revealed tidally-driven vertical fluctuations of several meters in the depth and thickness of the suboxic zone. Bottom water concentrations of sulfide, Mn2+ and Fe2+ also varied over the tidal cycle by approximately an order of magnitude. These data indicate that redox species concentrations at this site varied more due to physical processes than biogeochemical processes. Based on analysis of ADCP data, tidal currents at this station were strongly polarized, with the principal axis of tidal currents aligned with the mainstem channel. Together with the chemical data, the ADCP analysis suggests tidal flushing of anoxic bottom waters with suboxic water from north of the site. The present study is thus unique because while most previous studies have focused on processes across relatively stable redox interfaces, our data clearly demonstrate the influence of rapidly changing physical mixing processes on water column redox chemistry.Also noted during the study were interannual differences in maximum bottom water concentrations of sulfide, Mn2+ and Fe2+. In 2003, for example, heavy spring rains resulted in severe hypoxia/anoxia in June and early July. While reported storm-induced mixing in late July/early August 2003 partially alleviated the low-oxygen conditions, bottom water concentrations of sulfide, Mn2+ and Fe2+ were still much higher than in the previous year. The latter implies that the response time of the microbial community inhabiting the suboxic/anoxic bottom waters to changing redox conditions is slow compared to the time scale of episodic mixing events. Bottom water concentrations of the redox-sensitive chemical species should thus be useful as a tracer to infer prior hypoxic/anoxic conditions not apparent from ambient oxygen levels at the time of sampling.  相似文献   

7.
The chemical speciation of dissolved mercury in surface waters of Galveston Bay was determined using the concentrations of mercury-complexing ligands and conditional stability constants of mercury-ligand complexes. Two classes of natural ligands associated with dissolved organic matter were determined by a competitive ligand exchange-solvent solvent extraction (CLE-SSE) method: a strong class (Ls), ranging from 19 to 93 pM with an average conditional stability constant (KHgLs) of 1028, and a weak class (Lw) ranging from 1.4 to 9.8 nM with an average KHgLs of 1023. The range of conditional stability constants between mercury and natural ligands suggested that sulfides and thiolates are important binding sites for dissolved mercury in estuarine waters. A positive correlation between the estuarine distribution of dissolved glutathione and that of mercury-complexing ligands supported this suggestion. Thermodynamic equilibrium modeling using stability constants for HgL, HgClx, Hg(OH)x, and HgCl(OH) and concentrations of each ligand demonstrated that almost all of the dissolved mercury (> 99%) in Galveston Bay was complexed by natural ligands associated with dissolved organic matter. The importance of low concentrations of high-affinity ligands that may originate in the biological system (i.e., glutathione and phytochelatin) suggests that the greater portion of bulk dissolved organic matter may not be important for mercury complexation in estuarine surface waters.  相似文献   

8.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   

9.
Iodide oxidation to iodate in near-surface waters of the open oceans is an elusive process, and an unequivocal demonstration of it would simplify modelling of the marine iodine system. In the open ocean, the upward advection of iodate complicates any mathematical treatment of the problem. In this context, the high concentration (0.1 μM) of iodate in the Black Sea surface waters suggested that this Sea might be a place where oxidation might be demonstrated. Hydrologically, the surface waters of the Black Sea appear to be downstream of the deeper waters and, given the latter's anoxicity, the surface waters seemed likely to gain most of their iodine as iodide by upward advection. To test this further, prior to experimentation, an iodine budget for the near-surface waters, based upon the latest hydrological model of the Sea was prepared; this predicts a minimum oxidation flux of 3.89×10−4 mol I m−2 a−1. The chemistry of this oxidation is discussed in the light of existing knowledge of the sulfide system. It is argued that as the redox potential of the IO3/I and I2/I couples at pHs typical of the Black Sea (7.75) are much higher than that of the sulfate–sulfide couple, iodide is probably oxidized in the near-surface domain. This contrasts with sulfide oxidation in the suboxic zone. The possible role of nitrifying bacteria in the oxidation is discussed.  相似文献   

10.
This work describes a laboratory experiment designed to unravel mercury species reactivity in superficial coastal sediments oscillating between oxic and anoxic conditions. The experimental set-up has been applied to a sediment slurry from the Arcachon Bay (France) to follow the evolution of both naturally occurring (i.e. endogenous) and isotopically enriched added mercury species (i.e. exogenous, 1??IHg and 2?1MMHg) at environmental levels. The transformation and partition between the different phases (aqueous, solid and gaseous) of the endogenous and exogenous mercury species (inorganic Hg (IHg), monomethyl Hg (MMHg), elemental Hg (Hg?) and dimethyl Hg (DMHg)) have been investigated by isotopic speciation methods throughout the experiment. The results demonstrate that the experimental approach is able to promote sediment redox oscillations and to simultaneously follow the biogeochemical fate of naturally occurring or added mercury species. Experimentally driven redox transition events were found to significantly enhance the aqueous Hg species concentrations, while the MMHg burden is not greatly affected. Indeed, during the anoxic-oxic transition, while aqueous endogenous IHg and MMHg exhibited a two-fold increase, aqueous exogenous IHg and MMHg increased 7 and 4 times, respectively. Transient increases of the net IHg methylation were recorded during the redox transitions with the largest increase of the MMHg contents (factor 1.8) observed during the oxic-anoxic transition. High resolution in situ redox experiments have not been performed up to now, therefore the developed experimental set-up provides novel insights in both the influence of redox conditions on Hg methylation/demethylation and adsorption/desorption processes and kinetics in superficial sediments.  相似文献   

11.
Measurements of gas-, particle- and precipitation-phases of atmospheric mercury (Hg) were made in the South and equatorial Atlantic Ocean as part of the 1996 IOC Trace Metal Baseline Study (Montevideo, Uruguay to Barbados). Total gaseous mercury (TGM) ranged from 1.17 to 1.99 ng m−3, with a weighted mean of 1.61±0.09 ng m−3. These values compare well with Pacific Ocean data and earlier results from the Atlantic. The open-ocean samples recorded a distinctive inter-hemispheric gradient, which is consistent with a long-lived trace gas emitted to a greater extent from the Northern than from the Southern Hemisphere. Correlations with surface 222Rn measurements indicate an influence of regional terrestrial sources on open-ocean TGM concentrations. Total Hg in precipitation ranged from 10 to 99 pM (volume-weighted average: 17.8±2.9 pM). On average, about 72% of the total Hg was “reactive” (i.e., reducible by SnCl2). The data showed an apparent rapid nonlinear decrease in concentration with event size (“washout curve”). The wet depositional flux was estimated at 18–36 nmol m−2 yr−1 (4–7 μg m−2 yr−1), which is slightly lower than that found in mid-continental locations of North America (6–12 μg m−2 yr−1). 210Pb analyses indicate a strong impact of particles on rain Hg concentrations. Particle-phase Hg (range 5–25 fmol m−3; mean 12±1 fmol m−3; 66% “reactive”) was comparable to values over the equatorial Pacific. The dry depositional flux is ca. 0.4 nmol m−2 yr−1, or 0.4–1.0% of the wet flux. Particle-phase Hg concentrations did not change significantly when African dust was present during sampling. However, the Hg/Al ratios were consistent with crustal values during the dust periods. The residence time of TGM was calculated to be 1.3–3.4 yr in this region, based on standing stock estimates. Incubation of rainwater added to surface seawater gave reduction rates [i.e., production of elemental Hg (Hg°); 1.6–4.3% d of total Hg added] comparable to additions of inorganic ionic standards, indicating that Hg+2 from precipitation is reduced in a similar manner in surface waters. Thus, precipitation-phase Hg is generally available for evasion to the atmosphere following deposition to the surface ocean, effectively enhancing the mobility and residence time of Hg at the Earth's surface.  相似文献   

12.
A series of high resolution (10 cm) vertical profiles of iron were determined across the oxic/anoxic boundary in the Lower Pond of the Pettaquamscutt Estuary. Selective chemical treatments and multiple analytical methods were used to detemine the oxidation state and lability of iron across the oxic/anoxic boundary. The vertical distributions of dissolved and total iron were determined by atomic absorption spectroscopy, and dissolved Fe(II) and reducible iron were determined using a modified Ferrozine spectrophotometric method. Well-developed maxima of total dissolved iron ≈7·5 μM occurred within the oxic/anoxic transition zone. Analysis of Fe(II) by the FZ method indicates that more than 95% of the dissolved iron determined by atomic absorption spectroscopy within the maximum is in the form of Fe(II). The concentration of dissolved Fe(II) ranged from <4 nM in oxygenated surface waters to between 7 and 8 μM at the total dissolved iron maximum.Both dissolved and total iron samples were treated with ascorbic acid to quantify the fraction of iron that was reducible in this system. Dissolved iron is quantitatively reduced to Fe(II) by 3·5 m depth, and particulate iron was almost completely dissolved by 6 m. Thermodynamic speciation calculations indicate that the dominant species of Fe(II) in the anoxic waters is the Fe(HS)+complex. In addition, the concentration of Fe(II) in the anoxic zone appears to be controlled by precipitation of a sulfide phase, the ion activity product for waters below 7 m is in good agreement with the solubility product of mackinawite.The vertical distribution of oxidation states of the metals indicates non-equilibrium conditions due to microbiological and chemical processes occurring in the redox transition zone. A one-dimensional vertical, eddy diffusion model is presented that incorporates redox reactions of iron, sulfide and oxygen. The modeling suggests the maximum in Fe(II) can be achieved through inorganic oxidation and reduction reactions, however the depth at which the maximum occurs is sensitive to sulfide oxidation, which appears to be dominated by biological oxidation. The magnitude of the Fe(II) maximum depends on the flux of iron into the basin, and reductive dissolution of particulate iron.  相似文献   

13.
Community metabolism and nutrient, iron (Fe) and manganese (Mn) cycling were examined in two intertidal, marine, microbial mat communities during short (4–5 days) incubations in closed, flow-through microcosms. Sediment microcosms were incubated under either light (light–dark cycles) or dark (continuous darkness) conditions to assess the effect(s) of photosynthetic oxygen production and microalgal activity on nutrient, Fe and Mn cycling. The effects of chemical redox reactions between reduced sulphur (S), Fe and Mn cycling were examined by blocking sulphate reduction, and reduced S production, with 25 mM molybdate while incubating under dark conditions.In light-incubated microcosms, negligible fluxes of nutrients (nitrogen and phosphorus) and trace metals were observed. A substantial sediment–water flux of reduced Fe (Fe2+) and Mn (Mn2+) was observed in microcosms incubated under continuous darkness; highest fluxes were observed in molybdate-amended microcosms. At both sites, biologically-mediated redox reactions accounted for a substantial (>50%) portion of the Fe2+and Mn2+flux. Both microbial mat communities exhibited similar rates of gross photosynthetic oxygen (O2) production, but dramatically different rates of net benthic O2flux. Distinct patterns of net O2production and trace metal cycling arose from differences in either trace metal oxide availability or reactivity (mineralogy), organic carbon mineralization rates, or sediment characteristics (porosity). Variations in the microbial community responsible for trace metal cycling could have also contributed to the pattern. The present data illustrate that chemically-mediated redox reactions between metal oxides and reduced S complicate interpretation of Fe and Mn fluxes, underscoring the need to separate chemical and biological reactions when attempting to determine the role of biological trace metal reduction in organic carbon oxidation.  相似文献   

14.
We examined the bioaccumulation and trophic transfer of mercury in two marine finfish species, striped bass (Morone saxatilis) and tautog (Tautoga onitis), collected from the Narragansett Bay (Rhode Island, USA). For each of these target fish, white muscle tissue was analyzed for total mercury (Hg) and results were evaluated relative to fish age, body size, and Hg content of preferred prey. Dietary and stable isotope analysis was also used to elucidate the effect of trophic processes on Hg concentrations in fish. The Hg content of muscle tissue was positively correlated with fish age and length for both species, although striped bass accumulated Hg faster than tautog. Accelerated Hg bioaccumulation in striped bass is consistent with its high trophic level (trophic level = 4.07) and Hg-enriched prey (forage fish and macrocrustaceans; mean Hg content = 0.03 mg Hg kg wet wt?1). In contrast, tautog maintain a lower trophic status (trophic level = 3.51) and consume prey with lower Hg levels (mussels and crabs; mean Hg content = 0.02 mg Hg kg wet wt?1). Despite differences in Hg bioaccumulation between target fish, the mean Hg concentration of tautog exceeded levels in striped bass (0.24 and 0.16 mg Hg kg wet wt?1, respectively) due to a disparity in age-at-catch between sampled groups (mean age of tautog and bass = 11.3 and 4.3 yr, respectively). Taking into account legal minimum catch lengths further revealed that 75.0% of legal-size striped bass (>70.2 cm TL; n = 4) and 44.8% of tautog (>40.6 cm TL; n = 29) had Hg levels beyond the US EPA regulatory threshold of 0.3 mg Hg kg wet wt?1. Moreover, Hg-length relationships suggest that each target fish meets this threshold near their minimum legal catch length. Our findings reiterate the value of species ecology to improve predictions of fish Hg and permit better management of human contamination by this important dietary source.  相似文献   

15.
A sediment budget for the Choptank River, one of the three largest estuaries on the eastern shore of Chesapeake Bay, was developed from measurements of sediment carried in upland runoff, shore erosion, sedimentation, and levels of suspended sediments in estuarine waters. Shore erosion was the major source of sediment (340 × 106 kg y?1), contributing seven times more sediment than upland runoff. Low relief, the rural character of the Coastal Plain drainage basin, and the susceptibility of poorly consolidated shoreline materials to erosion contributed to the dominance of shore erosion over runoff as a sediment source. Box modelling indicated a net annual flux (14–44 × 106 kg y?1) of sediment from the Choptank River to Chesapeake Bay. A mass balance estimate of sedimentation, calculated as the difference between total inputs and loss at the mouth of the estuary, (350 × 106 kg y?1) agreed well with an estimate based on 210Pb profiles (340 × 106 kg y?1) measured along the longitudinal axis of the estuary. Lead-210 sedimentation rates correspond to accumulation rates of 1·5–7·9 mm y?1.  相似文献   

16.
《Marine Chemistry》2007,103(1-2):76-83
Accurate determination of methyl mercury (MeHg) concentrations in sediment pore waters is crucial for an improved understanding of mercury (Hg) biogeochemistry, and for improved risk assessment of Hg contaminated sites. In the present study, effects of oxic (air) and anoxic (N2) filtration (after centrifugation) on determined pore water MeHg concentrations were investigated in severely Hg contaminated pulp fibre sediments from two estuaries of the Bothnian Sea, Sweden. MeHg was determined in the filtrate using species-specific isotope dilution gas chromatography inductively coupled plasma mass spectrometry (SSID–GC–ICPMS), after ethylation with sodium tetraethylborate. Determined concentrations of MeHg were greater after anoxic filtration than after oxic filtration for all samples investigated, with MeHg(N2)/MeHg(air) ratios ranging between 3.4 and 343. Adsorption to newly formed Fe(III)/Mn(III/IV)-oxy/hydroxide surfaces is proposed as the main mechanism responsible for MeHg removal during oxic filtration. This is supported by decreases in dissolved Fe and Mn concentrations during oxic filtration, and by decreases in dissolved sulphur concentrations during oxic filtration in the samples with largest effect on MeHg concentrations. The latter is explained by adsorption of SO42− to newly formed Fe(III)/Mn(III/IV)-oxy/hydroxide surfaces. The effect of oxidation during filtration on pore water MeHg concentrations was largest in samples in which FeS(s) was not present, but with calculated pe-values below − 3. Thus, our results indicate that the largest errors with respect to pore water MeHg concentrations when filtering in air can be expected in samples with an intermediate redox potential, possibly buffered by a mixture of oxidation sensitive Fe(II/III) minerals.  相似文献   

17.
Actinide speciation in aquatic systems   总被引:1,自引:0,他引:1  
Nuclear test explosions and reactor wastes have deposited an estimated 16 × 1015 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is on the order 10− 5 Bq/kg, indicating that most of the plutonium is quite insoluble in marine waters and has been incorporated into sediments. Actinide ions often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system.Actinide solubility depends on such factors as the pH (hydrolysis), Eh (oxidation state), reaction with complexants (e.g., carbonate, phosphate, humic acid, etc.), sorption to surfaces of minerals and/or colloids etc., in the water. The most significant of these variables is the oxidation state of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g., plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O2+ and Pu(V)O2+, the most significant states in natural, oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO2+ can be as high as 10− 4 M while that of PuO2+ is limited by reduction to the insoluble tetravalent species, Pu(OH4), (pKsp = 56). The net solubility of hexavalent UO22+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO)3(OH), is limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH)4.The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. While much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine bioto, much more is needed for a satisfactory understanding of the behavior of the actinides in the environment.  相似文献   

18.
Concentrations of mercury were determined for the waters, suspended matter and sediments of the Tagus and of major French estuaries.The Tagus estuary is one of the most contaminated by mercury derived from the outfalls of a chloralkali plant and from other industrial sources. In deposited sediments the median level, 1·0 μg Hg g?1, is twenty times higher than the natural background and Hg contents depend on the sediment grain-size, age and the distance from waste-outfalls. Suspended matter is more regularly and highly contaminated (median value: 4·5 μg Hg g?1). In the French estuaries Hg levels in the suspended material decrease with salinity due to dilution and/or remobilization processes. In June 1982, in the Loire estuary, high values of Hg are observed in the middle estuary and attributed to urban and industrial sources.In the Tagus estuary, the general distribution of total dissolved Hg confirms the contamination: it increases seaward from 10 ng 1?1 in the river to 80 ng 1?1 in the estuary outlet. The dissolved Hg is almost totally organic in the river, inorganic in the middle estuary due to inorganic Hg effluents and again organic in the lower estuary. This variation is related to the dissolved organic carbon values. The dissolved Hg levels in the Loire Estuary (5–300 ng 1?1) are much higher than in the Gironde estuary (3–6 ng 1?1) and of the same order as those observed in the Tagus estuary.  相似文献   

19.
The thermodynamics and kinetics of the H2S system in natural waters have been critically reviewed. Equations have been derived for the solubility and ionization of H2S in water and seawater as a function of salinity, temperature and pressure. Pitzer parameters for the interaction of the major cations (Na+, Mg2+ and Ca2+) with HS have been determined to allow one to calculate values of pK1* in various ionic media. The limited data available for the interaction of trace metals for HS are summarized and future work is suggested.The kinetics of oxidation of H2S have also been examined as a function of pH, temperature, and salinity. The discrepancies in the available data are largely due to the different [O2]/[HS−] ratios used in various studies. Over a limited pH range (6–8) the pseudo first order rate constant for the oxidation is shown to be directly proportional to the activity of HS. Further studies are suggested to examine the effect of ionic media and temperature on the rate of oxidation.  相似文献   

20.
Vertical profiles of dissolved and particulate 210Po and 210Pb were measured across the redox transition zone at Station F1 in Framvaren Fjord, Norway. In this fjord, a sharp decrease in pH above the O2/H2S interface facilitates the aerobic dissolution of MnO2. In contrast, Fe(II) concentrations begin to increase only at the O2/H2S interface depth. Activity profiles reveal that dissolved 210Po and 210Pb are sequestered efficiently by particulates in surface waters. As polonium-210 and lead-210 activities descend down into the aerobic manganese reduction (AMR) zone, they are remobilized during the reductive dissolution of the carrier phase oxyhydroxides. Both 210Po and 210Pb are highly enriched at the O2/H2S interface where an active community of microbes, such as anoxygenic phototrophs (e.g., Chromatium, Chlorobium sp.), thrives. The coincident peaks in 210Po, 210Pb and microbial biomass suggest a strong biological influence on the behavior of these radionuclides. There is a strong covariance between the vertical distribution of Mn and Pb, indicating that their redox cycling is closely coupled and is likely microbially mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号