首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research examines methods for detecting unknown transient waveforms that are contaminated by noise. The sensitivity of the performance levels of the energy detector and the lack of knowledge about the structure of the transient waveform motivate the examination of other moment- or spectra-based detection techniques. We examine the performance of a bispectral energy detector and show that its performance will degrade if the bispectra is smoothed and that signals with no bispectral content can be detected if the bispectra is not smoothed. Further, it is shown that the performance levels of the bispectral detector are slightly better, and slightly less sensitive, than those of the energy detector for the multipath linear frequency modulated signal. Finally, the performance levels of narrowband implementations of the energy and bispectral energy detectors are compared. It is shown that for a large enough sample, the performance levels of the bispectral detector are nearly as good as those of the optimal energy detector for the single narrowband signal case. However, when the received waveform contains multiple narrowband components, the narrowband bispectral detector performs slightly better than the energy detector  相似文献   

2.
Active sonar detection in shallow water using the Page test   总被引:1,自引:0,他引:1  
The use of active sonar in shallow water results in received echoes that may be considerably spread in time compared to the resolution of the transmitted waveform. The duration and structure of the spreading and the time of occurrence of the received echo are unknown without accurate knowledge of the environment and a priori information on the location and reflection properties of the target. A sequential detector based on the Page test is proposed for the detection of time-spread active sonar echoes. The detector also provides estimates of the starting and stopping times of the received echo. This signal segmentation is crucial to allow further processing such as more accurate range and bearing localization, depth localization, or classification. The detector is designed to exploit the time spreading of the received echo and is tuned as a function of range to the expected signal-to-noise ratio (SNR) as determined by the transmitted signal power, transmission loss, approximate target strength, and the estimated noise background level. The theoretical false alarm and detection performance of the proposed detector, the standard Page test, and the conventional thresholded matched filter detector are compared as a function of range, echo duration, SNR, and the mismatch between the actual and assumed SNR. The proposed detector and the standard Page test are seen to perform better than the conventional thresholded matched filter detector as soon as the received echo is minimally spread in time. The use of the proposed detector and the standard Page test in active sonar is illustrated with reverberation data containing target-like echoes from geological features, where it was seen that the proposed detector was able to suppress reverberation generated false alarms that were detected by the standard Page test  相似文献   

3.
For cases in which a received signal is known exactly and the additive noise is white and Gaussian, the optimal detector can be implemented as a matched filter followed by a threshold comparator. However, the performance of this detector is sensitive to signal shifts and mismatch between the assumed and the actual structure of the received signal. As such, the use of a matched filter detector in a multipath environment can result in substantially poorer performance than expected. Here, it is shown that the use of the incoherent (or sliding) matched filter can also result in a substantial performance loss if the signal autocorrelation function is narrow relative to the interarrival times of the pulses. In contrast, a detector that compares the zero-zero lag of the matched filter cumulant sequence to a threshold has a performance that is relatively insensitive to multipath channels  相似文献   

4.
The detection of a passive sonar target in the presence of ambient noise and a plane wave interference is discussed. Intuitively, such a detector consists of a spatial filter which nulls the interference, followed by a temporal filter. In this paper we study the role of the a priori knowledge of the spectrum of the interference and/or signal in improving detector performance. We develop three different generalized likelihood ratio test (GLRT) detectors, resulting from different cases of prior spectral information. We show that, for all cases of known/unknown source and/or interference power spectrum, the GLRT detectors are, as expected, null steering systems. The depth and shape of the null, as well as the postbeamforming temporal filter, are different and are functions of the a priori known spectrum. Under the assumption that all signals and noise are zero-mean Gaussian processes, we analyze the performance of the different detectors and we exploit their dependency on the array beampattern, as well as on the source and interference signal-to-noise ratio. This analysis serves to identify scenarios where the use of prior spectral information leads to significant performance improvement  相似文献   

5.
The Cramer-Rao lower bound is used to assess the potential localization accuracy of a horizontal array observing a narrowband moving target. The narrowband signal received by the array is assumed to have only partial temporal coherence, which is modeled by taking the signal to be completely coherent over a data block but with an unknown absolute phase from block to block. A numerical example for a linear array illustrates the improvement in localization accuracy caused by an increase in the signal coherence time. The effect of target/array geometry is also studied  相似文献   

6.
An overview of underwater acoustic channel modeling and threshold signal processing is presented, which emphasizes the inhomogeneous, random, and non-Ganssian nature of the generalized channel, combined with appropriate weak-signal detection and estimation. Principal attention is given to the formal structuring of the scattered and ambient acoustic noise fields, as well as that of the desired signal, including both fading and Doppler "smear" phenomena. The role of general receiving arrays is noted, as well as their impact on spatial and temporal signal processing and beam forming, as indicated by various performance measures in detection and estimation. The emphasis here is on limiting optimum threshold systems, with some attention to suboptimum cases. Specific first-order probability density functions (pdf's) for the non-Ganssian components of typical underwater acoustic noise environments are included along with their field covariances. Several examples incorporating these pdf's are given, to illustrate the applications and general methods involved. The fundamental role of the detector structure in determining the associated optimum estimators is noted: the estimators arc specific linear or nonlinear functionals of the original optimum detector algorithm, depending on the criterion (i.e., minimization of the chosen error or cost function) selected. Results for both coherent and incoherent modes of reception are presented, reflecting the fact that frequently signal epoch is not known initially at the receiver. To supplement the general discussion, a selected list of references is included, to provide direct access to specific detailed problems, techniques, and results, for which the present paper is only a guide.  相似文献   

7.
海水中丙烯酸的高效液相色谱法建立及应用   总被引:2,自引:0,他引:2  
建立了一种测定海水介质中丙烯酸的高效液相色谱法。采用耐纯水相和较低pH的Agilent SB-Aq-C18柱(100 mm×4.6 mm i.d.,5 μm), 0.35%磷酸溶液(pH=2)为流动相,使用紫外检测器,检测波长为210 nm,外标法定量测定。丙烯酸的保留时间在14.2~ 14.9 min,方法的检出限为4 nmol/dm3(S/N=3),在0.01~10 μmol/dm3的范围内均有良好的线性关系,相关系数可达0.999 6,加标回收率为95.4%~98.1%,相对标准偏差为1.3%~1.6%(1.04~2.32 μmol/dm3)。采用0.2 μm滤膜重力过滤冷藏的办法来保存海水丙烯酸样品。检测出2011年5月份青岛近海海水中丙烯酸的平均浓度为(0.101±0.069) μmol/dm3;海洋微藻球形棕囊藻在整个生长周期内培养体系中丙烯酸的浓度为0.339~2.219 μmol/dm3。  相似文献   

8.
Predicting sonar detection performance is important for the development of sonar systems. The classical sonar equation cannot accurately predict sonar detection performance because it does not incorporate the effect of ocean environmental and source position uncertainty. We propose an analytical receiver operating characteristic (ROC) expression that characterizes the performance of the optimal Bayesian detector in the presence of ocean environmental and source position uncertainty. The approach is based on a statistical model of the environment and a physical model of acoustic propagation, which translates ocean environmental and source position uncertainty to signal wavefront uncertainty. The analytical ROC expression developed in this paper is verified for source position uncertainty due to source motion using both simulated data and real data collected during the Shallow Water Evaluation Cell Experiment (SWellEx-96). The results showed that the primary effect of source position uncertainty on optimal sonar detection performance is captured by the rank that corresponds to the significant eigenvalues of the signal matrix, an ensemble of replica signal wavefronts (normalized acoustic pressure vector) at the receiving array. The results also showed that the proposed ROC expression provides a realistic detection performance prediction for the Bayesian detector for source position uncertainty using real data. The proposed approach to sonar detection performance prediction is much simpler and faster than those using conventional Monte Carlo approaches.  相似文献   

9.
V. V. Povazhnyi 《Oceanology》2014,54(3):387-391
A simple fluorometer for determination of the chlorophyll “a” (chl “a”) concentration in an extract based on bright light emitting diodes (LEDs) in the blue and IR spectrum range used as a continuous excitation light source and light detector, respectively, has been described. Results of calibration and validation of the system’s signal with the help of extracts with different chl “a” concentrations are presented.  相似文献   

10.
This paper presents an evaluation of second, third, and fourth-order moments for the passive detection of transient signals in both simulated Gaussian noise and measured noise. The measured noise was recorded by a vertical array located near the San Diego, CA, harbor and is dominated at low frequencies by ship-generated noise. The detectors assume neither noise nor signal stationarity and can use single or multiple channels of data. Simulation results indicate that the fourth-order moment detector often performs better than the energy detector in the correlated measured noise, with increasing channel contributions to the moment function, resulting in increased gain. The results in simulated Gaussian noise likewise favor the fourth-order moment detector, at least for the signals with significant fourth-order moments, but the ability of the higher order detector to discriminate against correlated noise is evident. Analysis over a 30-min segment of the measured noise with selected signals demonstrates that fourth-order detection gains can be reliably expected as the noise statistics change.  相似文献   

11.
鲸豚类海洋哺乳动物发出的回声定位信号是一种频率较高的短时脉冲信号,研究回声定位信号检测方法有助于快速、准确地检测海洋哺乳动物发声,进而更好地保护海洋哺乳动物.本文提出了一种基于图像处理的鲸豚类动物回声定位信号检测方法.该方法首先对收集到的数据进行分帧,计算每帧信号的时频图;使用Frangi滤波器对时频图进行滤波,以降低...  相似文献   

12.
Underwater noise due to snapping shrimp is highly impulsive, and often dominates the ambient noise environment of warm, shallow waters at frequencies above 1 kHz. We report here on the statistics of bandpass snapping shrimp noise data, and on the modeling of the joint distribution of the in-phase and quadrature components using bivariate versions of the generalized Gaussian (GG), generalized Cauchy, and Gaussian-Gaussian mixture models. We evaluate the performance of several generalized energy detectors for passive bandpass detection, by inserting stochastic signals into the noise data. Detection thresholds were measured for an integration time of 0.5 s and false alarm probabilities down to 1%. The locally optimum detector based on the mixture model gave the best weak signal detection performance, with an 8 dB reduction in detection threshold over conventional energy detection. A significance test detector based on the GG model performed 1-2 dB worse, but exhibited better strong signal performance  相似文献   

13.
The first-generation University of Illinois gamma-ray transmission densitometer, designed for the in situ measurement of sediment bulk density, was modified by incorporating in the detector probe (1) an Americium-241 alpha particle pulser and an anti-walk gain stabilization control to maintain better temperature stability and (2) a small power supply and a IC preamplifier to eliminate the need for a high-voltage coaxial cable between the detector and external signal conditioning electronics package. This second-generation Lehigh University system has been successfully deployed since 1971 in routine use from ships and submersibles in the Atlantic and Pacific Oceans and the Gulf of Mexico. Results are presented of system operations to (1) measure bulk density over the range of 1.2–1.8 Mg/m3 in the Hudson Canyon, (2) penetrate 1.9 m into the seafloor in the San Diego trough and, (3) be lowered to a water depth of 3.6 km in the Gulf of Mexico.  相似文献   

14.
This research investigates whether passive detection of transient signals can be improved by replacing received signals with functionals of the received signals in correlation detectors. Specifically, this paper assesses the impact of using energy spectrum and autocorrelation functional inputs to the cross-correlation (energy), bicorrelation, and tricorrelation detectors. Test signals with differing autocorrelation and energy spectrum properties are used in computer simulations with independent Gaussian noise to evaluate detector performance. Detection results are presented for the case when only two channels of input data are available to form the correlations, as well as the case when three and four channels of input data are available to form the higher order correlations. In the former case, it is shown that detection performance can be improved for the narrow-band signals by using the energy spectrum and autocorrelation functional inputs rather than the original received signal. In the latter case, it is shown that detection performance can be improved by using the autocorrelation input for the broadband signal and the energy spectrum input for the narrow-band signals, and that the tricorrelation detector performs best for the signals tested  相似文献   

15.
李焜  方世良 《海洋工程》2015,29(1):105-120
The conventional matched field processing (MFP) uses large vertical arrays to locate an underwater acoustic target. However, the use of large vertical arrays increases equipment and computational cost, and causes some problems such as element failures, and array tilting to degrade the localization performance. In this paper, the matched field localization method using two-hydrophone is proposed for underwater acoustic pulse signals with an unknown emitted signal waveform. Using the received signal of hydrophones and the ocean channel pulse response which can be calculated from an acoustic propagation model, the spectral matrix of the emitted signal for different source locations can be estimated by employing the method of frequency domain least squares. The resulting spectral matrix of the emitted signal for every grid region is then multiplied by the ocean channel frequency response matrix to generate the spectral matrix of replica signal. Finally, the matched field localization using two-hydrophone for underwater acoustic pulse signals of an unknown emitted signal waveform can be estimated by comparing the difference between the spectral matrixes of the received signal and the replica signal. The simulated results from a shallow water environment for broadband signals demonstrate the significant localization performance of the proposed method. In addition, the localization accuracy in five different cases are analyzed by the simulation trial, and the results show that the proposed method has a sharp peak and low sidelobes, overcoming the problem of high sidelobes in the conventional MFP due to lack of the number of elements.  相似文献   

16.
A unified treatment for performance evaluation of various array signal processors is presented. Detection performance is expressed in terms of the parameter of the power-type receiver operating characteristic (ROC) for optimum, beamformer, and null-steerer detectors. Estimation performance is analyzed in terms of the normalized mean-square error (MSE) for minimum mean-square error (MMSE) and maximum likelihood estimators (MLE's) under a varying noise environment. Sensitivity of the detection/estimation performance to the varying internal and directional noise sources is investigated. An interesting inverse relationship is presented between the normalized MSE of the MMSE estimator and the power-type ROC parameter for the optimum detector.  相似文献   

17.
The approach to determine working frequencies of acoustic in-situ detector for seafloor hydrothermal fluid is presented. Based on the research of deep-sea noise and the sound generated by mid-ocean ridge black smoker hydrothermal vents, and on the hydrothermal-vent animal hearing ranges, coupled with influences of suspended particles of hydrothermal on acoustic attenuation under different frequencies, the optimal frequency range for detection of acoustical signal near black smokers is determined. The optimal frequencies providing the maximum ratio of receiver signal to background noise are obtained. We have developed a laboratory experimental setup for the optimal frequencies selection. In particular, we evaluated time-of-flight performance with respect to the source signal parameters of center frequency and bandwidth. The experimental results confirm the effectiveness of our approach. Current results indicate that individual transducers operated in the range of 18 ~ 25 kHz are immune to most interfering sounds and suitable for our system.  相似文献   

18.
In this paper, the effect of channel phase coherence upon a matched filter envelope detector output is investigated for a pulsed radar or active sonar. A novel model for the correlated channel phases allows the explicit calculation of the loss in detection performance using the deflection criteria. The theoretical model yields good agreement with simulations when the phase correlation coefficients between the first and last pulses are between 0.1 and 1.0. It is shown that a 3-dB loss in performance, as compared to the optimum detector for perfect coherence, requires phase correlation between adjacent pulses ofrho_{i,i+1} = 0.91, 0.96, and 0.96 for 10, 20, and 30 pulses, respectively. On the other hand, the same performance is obtained with a noncoherent combiner of the matched filter pulse returns when correlation between adjacent pulses,rho_{i,i+1} = 0.8, 0.835, and 0.84 for 10, 20, and 30 pulses, respectively. Ifrho_{i,i+1}is smaller than these quantities, one is better off performing noncoherent detection.  相似文献   

19.
Long-range underwater acoustic systems, such as those used in ocean acoustic tomography, require low-frequency signals covering a broad frequency band. To meet this requirement, a novel design based on a tunable narrow-band high-efficiency sound projector has been used. The projector transmits a frequency sweep signal by mechanically tuning a resonator tube (or organ pipe) to match the frequency and phase of a reference signal. The resonator tube projector consists of a symmetrical pressure-balanced Tonpilz driver placed between two coaxially mounted tubes. The Tonpilz acoustic driver is composed of two pistons separated by preloaded ceramic stacks. The resonant tube is a simple, efficient, narrow-band, medium-output projector that operates at any ocean depth. Both projector tubes have slots (or vents) which are progressively covered or uncovered by sliding coaxial tubular sleeves. The frequency varies with the sleeve position. A computer-controlled electromechanical actuator moves the cylindrical sleeves along the tubes, keeping the projector in resonance at the instantaneous frequency of a swept frequency signal. The actuator smoothly tunes the resonator tube frequency in a bandwidth of 200 to 300 Hz during a 135-s transmission. A computer synthesizes the linear frequency-modulated signal; compares the phase between transmitted and reference signals; and, using a phase-lock loop (PLL) system, keeps the resonator tube frequency in resonance with the driver frequency. The estimated PLL precision is better than 3/spl deg/ phase error. The system was analyzed by means of finite element analysis and electrical equivalent circuit simulation. The projector prototype was first tested at the Woods Hole Oceanographic Institution (WHOI) dock in Woods Hole, MA and later in the Pacific Ocean during a voyage of the R/V "Point Sur" in November 2001.  相似文献   

20.
Underwater acoustic transient signals are generated mechanically at known positions along a wharf. These signals are received by a wide aperture planar array of four underwater acoustic sensors, whose positions relative to the wharf are unknown. A method is described that enables the positions of the sensors to be estimated from accurate differential time-of-arrival measurements (with 0.1 /spl mu/s precision) as the signal wavefronts traverse the array. A comparison of the estimated positions with the nominal positions of the first three sensors, which form a 20-m-wide aperture horizontal line array, reveals a 2-cm displacement of the middle sensor from the line array axis. This slight bowing of the line array results in overranging (bias error of 3%) when the wavefront curvature method is used with the nominal collinear sensor positions to locate a static source of active sonar transmissions at a range of 59.2 m. The use of the spherical intersection method coupled with the estimated sensor positions of the line array provides an order of magnitude improvement in the range estimate (within 0.3% of the actual value). However, systematic ranging errors are observed when the sound propagation medium becomes nonstationary. Next, the differences in the arrival times of the direct path and boundary-reflected path signals at the middle sensor of the wide aperture line array are estimated using the differential phase residue of the analytic signal at the sensor output. These multipath delays are used to estimate the range and depth of the source. Although the average value of the multipath range estimates is within 0.5% of the actual value, the variance of the range estimates is 50 times larger when compared with the results of the spherical intersection and wavefront curvature methods. The multipath delay data are also processed to provide a reliable estimate of the temporal variation in the water depth enabling the tidal variation to be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号