首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pitt River is a meandering river channel linking the Fraser River estuary and Pitt Lake. The lake acts as a temporary reservoir for tidally diverted Fraser River flow. Stage level can fluctuate 2 m in Pitt River and as much as 1.2 m in Pitt Lake on a tidal cycle. Stage data from three locations in the system, used in conjunction with velocity measurements (profiles and tethered meter), revealed large tidal and seasonal variations in discharge. Calculations indicate that during the flood, basal shear stress peaks earlier in the cycle and reaches higher values than during the ebb. Thus, sediment moves farther forward on a flood flow than it moves back on the succeeding ebb. An upstream movement of sediment in Pitt River from the Fraser River is indicated by: (1) the identical mineralogy of the two rivers, (2) a decrease in median grain size from the Fraser to Pitt Lake, and (3) a predominance of flood-oriented bedforms in the river channel. A delta, 12 km2 area, has accumulated at the lower (draining) end of the lake. Studies of the river channel using hydrographic charts revealed regular meanders (λM = 6100 m) and evenly spaced riffles and pools which appear to be scaled to the strongest flow, winter flood current (2400 m3/s). The winter flood is thus considered to be the effective discharge. Meander point bars are accreting on the ‘upstream’ side indicating deposition by the flood-oriented flow. The three dimensional geometry of the large-scale bedforms which cover the sandy thalweg of both river and delta channel was determined by echo sounding and side-scan sonar. Three distinct sizes (height/spacing = 0.8 m/10–15 m; 1.5 m/25–30m; 3m/50–60 m) of large-scale bedforms (sand waves) were found; their linear relationship of height vs. spacing on a log-log plot suggests a common genesis. Their occurrence by size does not appear to be related to depth of flow but rather to their position in the channel with respect to large scale features which alter flow.  相似文献   

2.
赵鑫  周阳 《地震工程学报》2018,40(4):867-872
土石坝坝体在坝前水位作用下极易产生渗流,为研究坝体加固对渗透水压的影响,针对具体水库实例,采用有限元法对除险加固前/后的坝体进行渗透坡降、单宽渗流量、准流网等计算,分析3种工况下的渗流过程,为土石坝的除险加固设计提供参考。结果表明:加固后上游坡各工况下的安全系数明显提高,其中单宽渗流量最大,可达0.636m~3/d,远大于规范允许值。  相似文献   

3.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

4.
Temperature plays an essential role in the ecology and biology of aquatic ecosystems. The use of dams to store and subsequently re-regulate river flows can have a negative impact on the natural thermal regime of rivers, causing thermal pollution of downstream river ecosystems. Autonomous thermal loggers were used to measure temperature changes downstream of a large dam on the Macquarie River, in Australia’s Murray-Darling Basin to quantify the effect of release mechanisms and dam storage volume on the downstream thermal regime. The magnitude of thermal pollution in the downstream river was affected by different release mechanisms, including bottom-level outlet releases, a thermal curtain (which draws water from above the hypolimnion), and spill-way release. Dam storage volume was linked to the magnitude of thermal pollution downstream; high storage volumes were related to severe thermal suppressions, with an approximate 10 °C difference occurring when water originated from high and low storage volumes. Downstream temperatures were 8 ̶ 10 °C higher when surface releases were used via a thermal curtain and the spillway to mitigate cold water pollution that frequently occurs in the river. Demonstrating the effectiveness of engineering and operational strategies used to mitigate cold water pollution highlight their potential contribution to fish conservation, threatened species recovery and environmental remediation of aquatic ecosystems.  相似文献   

5.
Data are presented to describe the at-a-station variations and downstream patterns of change, of flow and water quality during the passage of a controlled reservoir release along a short 10 km reach, immediatly below the dam. By removing the effects of runoff from diverse catchment sources, which characterise natural flow variations, reservoir releases are used to focus attention on the effects of channel characteristics. At each of four main sites, measurements were made at 4 min intervals for at least 4 h. The data illustrate the dominant effect of initial flow conditions, especially channel roughness, upon wave movement, suspended solids transport, and hydrochemical lags. Variations in the patterns of change appear to relate to spatially variable in-channel sources which can be particularly influential within such short study reaches.  相似文献   

6.
A preliminary assessment of the Wujiangdu Reservoir examined nutrient distribution and transport.Water samples were collected in the summer(July) of 2004, during the high-flow season. Inorganic nutrients(N,P, Si) and chlorophyll a(chl a) concentrations of the Wujiangdu Reservoir and its inflow rivers were analyzed.Other water parameters(dissolved oxygen, p H, temperature, and electrical conductivity) were measured as well.The results show gradually decreasing concentrations of NO_3~--N and dissolved silicate in the surface water moving downstream to the dam of the Wujiangdu Reservoir.Additionally, soluble reactive phosphorus concentrations measured very low, with most falling below the sensitivity threshold of the method used in surface waters. Particulate phosphorus and NO_3~--N were the predominant species of phosphorus and nitrogen in the reservoir, respectively. The concentration of nutrients in the Yeji River was the largest of all inflow rivers. The maximum concentration of chl a was found near the dam. These results reflect upstream conditions similar to that of a river, and reservoir conditions near the dam similar to that of a natural lake system.  相似文献   

7.
2017年5月—2019年10月,对"南水北调"中线水源水库——丹江口水库库区水体7个监测位点、0~20 m间4个水层的垂向叶绿素a (Chl.a)浓度与水质因子进行了季度性调查,以期了解不同位点、不同水层Chl.a分布的主要驱动因子.结果表明,丹江口水库各位点营养状态指数(TSI)均为中营养化状态.水体Chl.a浓度具有逐年增加的趋势,且极高值有逐渐增加的趋势.营养盐和Chl.a浓度均存在较大的空间异质性,入库区具有较高的总磷和氨氮浓度,汉江库区具有最高的Chl.a浓度,源头污染源控制和监测仍然是丹江口水库管理的重中之重.不同位点Chl.a浓度的驱动因子存在较大差异,汉江入库和大坝区Chl.a浓度分别受到硝态氮和p H的影响,而出水口大坝位点主要受到了水深、水温和氨氮的影响.丹江入库区Chl.a浓度受到了水深、氨氮、总磷和水温的影响,但丹江库区表现出了与其他生态区较大的区别,其Chl.a浓度主要受到水深和有机质输入的影响.因此,对丹江口水库各位点的管理,应该分不同生态区采取针对性的管理措施.本研究旨在为南水北调中线工程可持续的生态调度提供基础生态数据支持,为完善水库水源地的有效管理提供理论支撑.  相似文献   

8.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   

9.
ABSTRACT

A three-dimensional flow and temperature model was applied for a 124 km river-reservoir system from Lewis Smith Dam tailrace to Bankhead Lock & Dam, Alabama. The model was calibrated against measured water levels, temperatures, velocities and flow rates from 4 May to 3 September 2011 under small constant release (2.83 m3/s) and large intermittent releases (~140 m3/s) from an upstream reservoir. Distributions of simulated flow and temperatures and particle tracking at various locations were analyzed which revealed the complex interactions of density currents, dynamic surface waves and solar heating. Flows in the surface and bottom layers moved in both upstream and downstream directions. If there was small constant release only from Smith Dam, simulated bottom temperatures at Cordova were on average 4.8°C higher than temperatures under actual releases. The momentum generated from large releases pushed bottom density currents downstream, but the released water took several days to reach Cordova.
Editor D. Koutsoyiannis; Associate editor B. Dewals  相似文献   

10.
本文对琼中台连续重力观测数据进行收集整理并处理,基于处理后的数据,进行了潮汐分析和非潮汐分析。潮汐分析采用VAV调和分析方法;非潮汐分析则分别进行了零漂改正、固体潮改正、气压改正和海潮改正。其中,零漂改正采用一般多项式拟合零漂的方法;气压改正采用VAV软件;海潮改正运用SPOTL程序,以NAO.99b潮汐模型计算了琼中台海潮负荷值。最终获得了改正后的琼中台重力非潮汐变化,结果表明琼中台的重力气压导纳值为-0.34×10-8m/s2/mbar,气压改正幅度约为10×10-8m/s2,海潮改正幅度约为5×10-8m/s2。改正后,琼中台重力非潮汐变化数据,比仅进行零漂固体潮改正后的重力非潮汐变化数据中的潮汐信号更加微弱,说明进行海潮改正后的效果是明显的,该方法可进一步去除其中的潮汐信号。  相似文献   

11.
The Three Gorges Dam is the world's largest capacity hydropower station located in the Hubei province along the Yangtze River in China, which began operations in 2003. The dam also functions to store and regulate the downstream releases of water in order to provide flood control and navigational support in addition to hydropower generation. Flow regulation is particularly important for alleviating the impacts of low- and high-flow events during the summer rainy season (June, July, and August). The impact of dam operations on summer flows is the focus of this work. Naturalized flows are modelled using a canonical correlation analysis and covariates of subbasin-scale precipitation resulting in good model skill with an average correlation of 0.92. The model is then used to estimate natural flows in the period after dam operation. A comparison between modelled and gauged streamflow post 2003 is made and the impact of the dam on downstream flow is assessed. Streamflow variability is found to be strongly related to rainfall variability. An analysis of regional streamflow variability across the Yangtze River Basin showed a mode of spatially negatively correlated variability between the upper and lower basin areas. The Three Gorges Dam likely mitigated the occurrence of high-flow events at Yichang station located near the dam. However, the high flow at the remaining stations in the lower reach is not noticeably alleviated due to the diminishing influence of the dam on distant downstream flows and the impact of the lakes downstream of the dam that act to attenuate flows. Three types of flow regime changes between naturalized and observed flows were defined and used to assess the changes in the occurrence of high- and low-flow events resulting from dam operations.  相似文献   

12.
B. Yellen  D.F. Boutt 《水文研究》2015,29(15):3261-3275
In humid regions, where gaining river conditions generally prevail, daily hydroelectric dam releases alter downstream surface water–groundwater interactions by reversing the head gradient between river and adjacent groundwater. Previously, it has been noted that artificial stage changes due to dam releases enhance hyporheic exchange. Here we investigate the regulated Deerfield River in northwestern Massachusetts at multiple scales to evaluate how changing downstream geologic conditions along the river mediate this artificial hyporheic pumping. Water budget analysis indicates that roughly 10% of bank‐stored water is permanently lost from the 19.5‐km river reach, likely as a result of transpiration by bank vegetation. An adjacent reference stream with similar dimensions and geomorphology, but without hydropeaking, shows predictable gaining conditions. Field observations from streambed piezometers and thermistors show that water losses are not uniform throughout the study reach. Riparian aquifer transmissivity in river sub‐reaches largely determines the magnitude of surface water–groundwater exchange as well as net water loss from the river. These newly documented losses from hydropeaking river systems should inform decisions by river managers and hydroelectric operators of additional tradeoffs of oscillatory dam‐release river management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
梯级筑坝对黑河水质时空分布特征的影响   总被引:1,自引:0,他引:1  
为探究梯级大坝建设对河流水质变化规律的影响,将黑河上中游划分为坝上河段、坝下河段及自然河段,于2017年12月-2018年8月选取了24个主要控制断面进行水质调查,并采用多元统计的方法对比分析了不同时空尺度上的水质分布特征.结果表明:黑河上中游水质时空变化的主要影响因子为水温(WT)、pH值、溶解氧(DO)、电导率(EC)、总氮(TN)、总磷(TP)和五日生化需氧量(BOD_5).空间尺度上,WT、EC、BOD_5、高锰酸盐指数(CODMn)、TN等指标具有显著性差异,其中坝上河段受BOD_5、CODMn影响较大,自然河段WT、EC和TN为关键指标,而各个因子对坝下河段水质影响较小.时间尺度上,WT、EC、BOD_5、氨氮与季节变化存在明显相关性,是不同河段水质时间变化的控制因子,且大多数水质因子在非汛期变化最明显.降水、温度、水文条件等季节性影响因素和梯级水库联合运用模式是该区域水质时间差异的主要原因;空间差异主要受祁连、张掖地区外源性污染物排放以及筑坝环境下水动力条件改变而产生的沉积滞留效应和沿程累积效应影响.研究表明,外源性污染源依然是导致水质变差的主要因素,梯级筑坝则是导致水质变差的间接因素.因此控制该区域人类活动所造成的外源性污染源,并针对不同种类污染物的季节变化特征实施合理的水库运行方式是改善水电梯级开发河段水质状况的关键.  相似文献   

14.
Reservoir release wave routing during 33 controlled reservoir releases, along 15 upland boulder bed river channel reaches, on five different regulated rivers were monitored to assess the importance of river channel roughness and reservoir release magnitude on reservoir release wave speeds. Wave speeds varied between 0.52 and 3.01 m s?1. Reservoir release wave translation, steepening, and attenuation occurred. With high channel roughness values reservoir release wave arrival speed is retarded in comparison to peak stage and wave steepening occurs, but with a reduction in channel roughness reservoir release wave front arrival is accelerated producing attentuation. The threshold between reservoir release wave front attenuation and steepening occurs at a pre-release discharge/channel width of approximately 0.1, an index of channel roughness. The paper also demonstrates, via comparison of observed and calculated reservoir release wave speeds on the River Washburn, Yorkshire, the difficulty of accurately predicting flood wave movement in upland boulder bed channels using existing prediction equations. The calculated values, however, revealed systematic error with pre-release discharge and reservoir release magnitude. Apparently the equations fail to account for the effects of high channel roughness together with pressure gradient forces, induced by rapid rates of stage change on the rising limb of reservoir releases. In order to accurately predict reservoir release wave movement in regulated rivers, this paper demonstrates that hydraulic studies need to be undertaken and pre-release discharges prescribed to determine desired reservoir release wave routing behaviour. Manipulation of the reservoir release pattern at the dam alone, cannot dictate reservoir release wave front form downstream or wave speed.  相似文献   

15.
水库建设改变了河流水文情势及物质迁移转化过程,从而影响水环境质量。为探究梯级筑坝影响下河流氮、磷的空间分布特征及其形成机制,以澜沧江为研究对象,于2016年和2021年分别开展了沿程水环境监测,对比分析水体中氮、磷及其形态浓度在水库建成前后的变化及沿程分布特征,探究氮、磷变化及其沿程分布的主控因子和影响机制。结果表明:由于河流建库蓄水淹没的土地释放大量土壤有机氮,新建水库段(2021年)水体总氮(TN)浓度相比于建库前(2016年)显著上升;由于建库后水流流速减缓而促进颗粒态磷沉降,水体总磷(TP)浓度显著下降。此外,河流建库蓄水后原自然河道的水环境特征改变且利于沉积物磷的释放,筑坝后水体磷酸盐(PO43--P)占生物可利用磷(Bio-P)的比例显著上升。受沿程土地利用的影响,从上游到下游水体TN浓度总体上逐渐升高,而水体TP浓度由于水库的截留效应逐渐降低。筑坝增加的水力停留时间为水库氮、磷转化提供了有利条件,主要表现为溶解性无机氮以硝态氮为主转变为以氨氮为主;同时,Bio-P中PO43--P的占比...  相似文献   

16.
三峡大坝上下游水质时空变化特征   总被引:6,自引:2,他引:4  
为探索三峡大坝上下游(坝上99.9 km、坝下63.0 km、全长162.9 km)水质时空变化特征,运用主成分分析和方差分析对2016年近坝段水质时空变化特征进行了分析.主成分分析表明,水文因子流量(Q)、气温(T)、水位(Z)和水质因子(水温(WT)、pH、电导率(EC)、溶解氧(DO)、悬浮物(SS)、高锰酸盐指数(CODMn)、硫酸盐(SO42-)、氟化物(F-)、总硬度(T-Hard)、硝态氮(NO3--N)、总氮(TN)和硒(Se))的变化主导着研究区域水质变化;各采样点主成分得分和双因素方差分析结果显示研究区域水质因子时间变化主要呈现出季节和不同水库运行时期的差异.消落期(2-5月),T-Hard、F-、SO42-和EC是影响河流水质变化的主导因子;汛期(7-8月),Q、SS、CODMn、NO3--N、TN和Se是影响河流水质变化的主导因子;T和WT主导着汛末(9月)河流水质变化,并引起了DO等理化特性的变化;高水位运行期(12月),Cl-是影响河流水质变化的主导因子.现阶段,DO、有机污染物(CODMn)、无机盐(SO42-和F-)、营养盐类(NO3--N和TN)、类金属元素(Se)和水体的矿化程度(T-Hard)的变化主导着区域水质的变化,是三峡大坝近坝段水域水质的控制因子.方差分析表明,河流的理化特性(DO、pH和SS)、营养盐组分构成(NH3-N和NO3--N)、无机盐类(EC和Cl-)、石油类有机污染物及粪大肠菌群(FC)等指标在坝上与坝下断面存在显著性差异.气温、水温、降雨、含沙量的季节性影响因素和水库调度运行模式是影响近坝段水质时间差异的主要因子;空间差异主要受城区污染排放和三峡水库调度引起的坝上和坝下水文和水动力学条件差异影响.因此控制研究区域因人类活动等造成的外源性污染,并针对不同类污染物质的季节变化特征实施合理的水库运行方式是近坝段水质提升的关键.  相似文献   

17.
金沙江下游4个梯级水电站总装机容量相当于两座三峡水库,是“西电东送”中部地区的源头工程,工程效益发挥对经济社会发展意义重大。2012年以来,向家坝、溪洛渡、乌东德和白鹤滩电站等陆续蓄水运行,层层拦截金沙江的泥沙,2013—2020年向家坝出库年输沙量均值下降至152万t,减幅超过99%。大量泥沙淤积在梯级水库内,同时向家坝以下河道发生长距离冲刷。本文以自金沙江下游工程筹建以来的观测资料为基础,针对梯级水库的泥沙淤积和坝下游河道冲刷规律开展研究,结果表明:金沙江下游四个梯级电站自建成运行至2020年底,累计淤积泥沙约5.98亿m3,其中溪洛渡库区淤积量占比达92.5%,2013-2020年溪洛渡和向家坝水库排沙比分别为2.64%和22.2%,其水库泥沙主要淤积在常年回水区的干流河道内,以死库容内淤积为主,侵占有效库容的比例小于1.3%。金沙江下游库区干流河道的峡谷特征明显,淤积多表现为主河槽的平铺式淤高。溪洛渡和向家坝库区淤积的泥沙沿程分选特征明显,越靠近坝前,中数粒径减小、细颗粒泥沙沙量百分数增加,极细颗粒泥沙会在库区一定范围内大量沉积。向家坝下游河床普遍冲刷,但...  相似文献   

18.
Lewis and Clark Lake is located on the main stream of the Missouri River. The reservoir is formed behind Gavins Point dam near Yankton, South Dakota, U.S.A. The Lewis and Clark Lake reach extends about 40 km from the Gavins Point dam. The reservoir delta has been growing since the closure of Gavins Point dam in 1955 and has resulted in a 21% reduction of storage within the maximum pool of the reservoir. Among several sediment management methods, drawdown flushing has been recommended as a possible management technique. The engineering viability of removing sediments deposited in the lake should be examined by numerical modeling before implementing a drawdown flushing. GSTARS4 was used for this study and calibrated by using measured data from 1975 to 1995. Channel cross-section changes and amount of flushed sediment were predicted with four hypothetical flow scenarios. The flushing efficiencies of all scenarios were estimated by comparing the ratios between water consumption and flushed sediment during flushing.  相似文献   

19.
The Butgenbach dam on the Warche River was built in 1932 in order to maintain a suf?cient supply of water to the Robertville reservoir situated 7 km downstream, for the production of hydroelectricity. During winter months, releases are made almost every day from the Butgenbach dam. From a hydrological point of view, this has resulted in signi?cantly reducing the number of discharges that are higher than bankfull. Despite the reduction in peak discharge, there is a signi?cant increase in the number of ef?cient discharges (0·6 bankfull). The impacts of these hydrological modi?cations on the bed morphology and sedimentology below the Butgenbach dam have been studied and the following geomorphological modi?cations have been identi?ed: a doubling of the width of the channel in 45 years, a reduction in the number of rif?es and pools, an increase in the number of gravel bars and islets and an increase in bedrock outcrops in the channel. Moreover, the ?nest bed particles are mobilized by the almost daily releases, inducing a signi?cant increase in bed‐material size sorting. The reduction of sinuosity and the disappearance of bed differentiation and rif?e/pool sequences have produced a diminution of bed roughness and an increase of the competence of the river. Thus relatively small ?oods can remove the armoured layer. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
We assessed the effectiveness of pulse flows in facilitating the upstream migration of an imperiled summer-run Chinook salmon (Oncorhynchus tshawytscha) stock in the Puntledge River, BC, Canada. During July and August, over 3 years, we tracked radio-tagged fish (n = 100) in a reach of the Puntledge River where water is diverted for power generation, resulting in stable low flows that are believed to impede migration. Over the course of  13 pulse flows, we measured migration rate, passage rate at natural barriers that are difficult to pass during low flows, movement away from the turbine outlet pool that creates distracting flows, and locomotor activity. Mean river flow during the peak of the pulses varied from 12.1 to 42.5 m3 s?1 and was at least 6.1 m3 s?1 above residual base flows. Typically, the pulse flows lasted 48 h. Migration rate was higher during some pulse flows, but results varied among pulses. Passage at natural barriers was only higher during an abnormal pulse where flows reached twice that of the prescribed flow (i.e., 24+ m3 s?1). Some fish moved away from the turbine outlet pool during pulse flows. Pulse flows did not affect fish activity levels, as measured by electromyogram telemetry. Although the effect of pulsed flows on the migration of the Puntledge River summer-run Chinook salmon was unclear, no negative impacts, such as hyperactivity or downstream displacement were observed. The use of pulse flows as a management tool still requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号