首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Headcut formation and migration was sometimes mistaken as the result of overland flow, without realizing that the headcut was formed and being influenced by flow through soil pipes into the headcut. To determine the effects of the soil pipe and flow through a soil pipe on headcut migration in loessic soils, laboratory experiments were conducted under free drainage conditions and conditions of a perched water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 and 1 l min−1 at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response was the formation of a headcut that extended in depth until an equilibrium scour hole was established, at which time the headcut migrated upslope. Pipeflow caused erosion inside the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes and greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe, in addition to pipeflow, increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 min compared with free drainage conditions. This study confirmed that pipeflow dramatically accelerates headcut migration, especially under conditions of shallow perched water tables, and highlights the importance of understanding these processes in headcut migration processes. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
The Lake Tahoe basin is experiencing an environmental decline that is partly due to sediment intakes from its tributaries. Many studies have estimated suspended sediment loads in these streams with a discrete sampling programme by collecting water samples and using a rating technique. However, the relationship between stream discharge and suspended sediment concentration (SSC) in these tributaries is known to differ during the rising and falling limbs of the snowmelt‐dominated hydrograph. Because of this hysteresis effect, sediment rating curves are poor predictors of suspended sediment dynamics in the stream. In this study, suspended sediment transport was investigated using a turbidity meter to provide a continuous record of sediment concentration during the snowmelt period. Hysteresis in suspended sediment transport was also investigated and is quantified with an H index, which is the ratio of the areas under the curve at different stages of the hydrograph. The temporal lag between the peak of SSC and the peak of stream discharge was quantified using cross‐correlation analysis. For almost all events, SSCs were higher during the rising limb of the hydrograph for a given discharge, with SSC peaks occurring before discharge peaks, resulting in clockwise hysteresis (H > 1). The H indices increased (looser hysteresis loop) as the availability of sediments increased and as the lag between peaks in SSC and discharge was larger. A restriction of the proposed H index was that it could only be computed when stream discharge increased by more than 30% during a melt event. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Subsurface flow can be an important process in gully erosion through its impact on decreasing soil cohesion and erosion resistance as soil water content or pressure increases and more directly by the effects of seepage forces on particle detachment and piping. The development of perched water tables fosters lateral flow that can result in seepage at the surface and/or formation of soil pipes by internal erosion of preferential flow paths. Continued internal erosion of soil pipes can lead to gullies, dam and levee failures. However, the processes involved in particle and aggregate detachment from soil pipe walls and transport processes within soil pipes have not been well studied or documented. This paper reviews the limited research on sediment detachment and transport in macropores and soil pipes and applies the knowledge learned from the much more extensive studies conducted on streams and industrial pipes to hydrogeologic conditions of soil pipes. Knowledge gaps are identified and recommendations are made for future research on sediment detachment and transport in soil pipes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract The suspended sediment load in the middle Yellow River basin (YRB) cannot be well predicted by capacity‐based transport formulas because a large fraction of suspended sediment load is composed of wash load. This study evaluated the spatial variations of sediment rating curves (SRCs) in the middle YRB. Both power and linear SRCs were used to fit daily flow and suspended sediment concentration (SSC) historical data at 49 gauging stations throughout the middle YRB. The spatial variation in regression coefficients was investigated, and the relationship between regression coefficients and the physical characteristics of watersheds was discussed. The results indicate that SRC regression coefficients vary with drainage area and basin slope, but their responses to these parameters are remarkably different in watersheds with different underlying surfaces, which indicates the significance of sediment availability, erodibility, and grain size distribution. For power SRCs representing sediment transport in unsaturated flows, the regression coefficients are more closely correlated with the drainage area in loess regions and with the basin slope in rock mountain regions. For linear SRCs representing sediment transport in saturated flows, saturated SSCs vary with coarse (particle size > 0.05 mm) and fine (particle size < 0.01 mm) fractions in suspended sediment. The maximum saturated SSC among the different gauging stations is associated with the optimal grain size composition of suspended sediment, which has been proposed for loess regions in previous studies. This study provides theoretical support for estimating the regression parameters for sediment transport modelling, especially in ungauged basins.  相似文献   

5.
Glenn Wilson 《水文研究》2011,25(15):2354-2364
The role of soil pipeflow in ephemeral gully erosion is not well understood. Experiments were conducted on continuous soil pipes to better understand the role of internal erosion of soil pipes and its relation to ephemeral gully development. Soil beds of 140 cm length, 100 cm width and 20 cm depth had a single soil pipe of different initial sizes (2, 4, 6, 8, and 10 mm diameter) extend from a water reservoir to the outlet. Experiments were run on Providence silt loam and Smithdale loam soils under a constant head of 15 cm established for 30 min. Either the tunnel collapsed or the head could not be maintained. Soil pipes that were initially 2 and 4 mm clogged instantaneously at their mouth and did not exhibit flow, whereas, pipes initially ≥ 6 mm enlarged by 268, 397, and 699% on average for the 6, 8, and 10 mm diameters, respectively. Critical shear stress values were found to be essentially zero, and erodibility values gave erosion indexes that were extremely high. The rapid internal erosion resulted in erratic flow and sediment concentrations with periods of no flow as pipes were temporarily clogged followed by surges of high flow and high sediment concentrations. Tensiometers within 6 cm of the soil pipes did not exhibit pressure increases typically associated with pipe clogging. Flow through 10 mm diameter soil pipes exhibited tunnel collapse for both soils tested. Tunnel collapse typically occurred within minutes of flow establishment suggesting that ephemeral gullies could be misinterpreted as being caused by convergent surface flow if observations were made after the runoff event instead of when flow is first established through soil pipes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Numerous soil pipes are reported from a small catchment in an area of kandoid (kaolin-rich) soils and 2375 mm annual rainfall in the humid tropical volcanic island of Dominica, West Indies. Two spot surveys in August 1982 at baseflow during the wet season indicated that pipes contributed at least 14–16 per cent of streamflow. Sampled pipeflow was of similar chemical composition to the baseflow-dominated streamwater. Specific conductance (249–420 μS cm?1) and silica (75 mg l?1) levels of pipeflow were high and suggested that the pipes tapped solute-rich water close to the soil-rock interface. The principal pipes flow perennially and showed little response to daily rainfalls of up to 43 mm during the monitoring period.  相似文献   

7.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The dynamics of suspended sediment involves inherent non‐linearity and complexity because of existence of both spatial variability of the basin characteristics and temporal climatic patterns. This complexity, therefore, leads to inaccurate prediction by the conventional sediment rating curve (SRC) and other empirical methods. Over past few decades, artificial neural networks (ANNs) have emerged as one of the advanced modelling techniques capable of addressing inherent non‐linearity in the hydrological processes. In the present study, feed‐forward back propagation (FFBP) algorithm of ANNs is used to model stage–discharge–suspended sediment relationship for ablation season (May–September) for melt runoff released from Gangotri glacier, one of the largest glaciers in Himalaya. The simulations have been carried out on primary data of suspended sediment concentration (SSC) discharge and stage for ablation season of 11‐year period (1999–2009). Combinations of different input vectors (viz. stage, discharge and SSC) for present and previous days are considered for development of the ANN models and examining the effects of input vectors. Further, based on model performance indices for training and testing phase, a suitable modelling approach with appropriate model input structure is suggested. The conventional SRC method is also used for modelling discharge–sediment relationship and performance of developed models is evaluated by statistical indices, namely; root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). Statistically, the performance of ANN‐based models is found to be superior as compared to SRC method in terms of the selected performance indices in simulating the daily SSC. The study reveals suitability of ANN approach for simulation and estimation of daily SSC in glacier melt runoff and, therefore, opens new avenues of research for application of hybrid soft computing models in glacier hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Analysis of hydrographs from a 4·3 hectare stream head catchment indicates that storm runoff is generated from dynamic source areas. The volume and timing of contributions from different parts of the catchment show, when compared with the extent of surface saturation, that pipeflow generated from areas not saturated at the soil surface is a significant component of the quickflow hydrograph. A simple model of pipeflow generation and contribution is discussed in the light of field results.  相似文献   

10.
Abstract

Suspended sediment and bedload discharges in sand-bed rivers shape semi-arid landscapes and impact sediment delivery from these landscapes, but are still incompletely understood. Suspended sediment and bedload fluxes of the intermittent Exu River, Brazil, were sampled by direct measurements. The highest suspended sediment concentration observed was 4847.4 mg L-1 and this value was possibly associated with the entrainment of sediment that was deposited in the preceding year. The bedload flux was well related to the stream power and the river efficiently transported all available bedload with a mean rate of 0.0047 kg m-1 s-1, and the percentage of bedload to suspended sediment varied between 4 and 12.72. The bed sediment of Exu River was prone to entrainment and showed a proclivity for transport. Thus, sand-bed and gravel-bed rivers of arid environments seem to exhibit the same mobility in the absence of armour layer.

Editor D. Koutsoyiannis; Associate editor B. Touaibia

Citation Cantalice, J.R.B., Cunha Filho, M., Stosic, B.D., Piscoya, V.C., Guerra, S.M.S., and Singh, V.P., 2013. Relationship between bedload and suspended sediment in the sand-bed Exu River, in the semi-arid region of Brazil. Hydrological Sciences Journal, 58 (8), 1789–1802.  相似文献   

11.
Sediment transport is a complex phenomenon due to the nonlinearity and uncertainties of the process.The present study applies Gene Expression Programming(GEP) to develop bedload transport models in sewer pipes. In this regard, two types of bedload were considered: loose bed(deposition state) and rigid bed(limit of deposition state). In order to develop the models, two scenarios with different input combinations were considered: Scenario 1 considers only hydraulic characteristics and Scenario 2 considers both hydraulic and sediment characteristics as inputs for modeling bedload discharge. The results proved the capability of GEP in prediction of sediment transport and it was found that for prediction of bedload transport in sewer pipes Scenario 2 performed more successfully than Scenario 1. According to the outcome of sensitivity analysis, F_(rm)(Modified Froude number) and d_(50/y)(relative particle size) for rigid boundary and F_(rm) for loose boundary had key roles in the modeling. The outcome of the GEP models also was compared with existing empirical equations and it was found the GEP models yielded better results. It was also found that pipe diameter affected the transport capacity of the sewer pipe. Increasing pipe diameter caused an increase in model efficiency. A pipe with a diameter of 305 mm yielded to the best results.  相似文献   

12.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Little is known about the association of soil pipe collapse features with soil properties or land use history. Three loess covered catchments in northern Mississippi, USA were characterized to investigate these relationships. Soil pipe collapses were characterized for their size, type feature and spatial location along with soil properties across the three catchments. Although mapped as the same soil, one of the catchments did not contain pipe collapse features while the other two had 29.4 and 15.4 pipe collapses per hectare. These loess soils contained fragipan layers that are suspected of perching water, thereby initiating the piping processes. Pipe collapses associated with subsurface flow paths were not always consistent with surface topography. The surface layer tended to be non‐erodible while layers below, even the upper fragipan layers, were susceptible to erosion by pipeflow. Soil properties of the lowest fragipan layer were highly variable but tended to prevent further downward erosion of soil pipes and thus formed a lower boundary for gullies. Middle to lower landscape positions in one of the piped catchments contained anthropic soils that were highly erodible. These anthropic soils were previously gullies that were filled‐in in the 1950s when forested areas, assumed to have been established when land was previously converted from crop to forest land, were converted to pasture. Three decades after this land use change from forest to pasture, pipe collapses became evident. In contrast, the adjacent catchment that does not exhibit pipe collapse features experienced severe sheet and rill erosion prior to the 1930s while in cotton production. The surface horizons above the lower fragipan layer were completely removed during this period, thus the top‐soil layer that tends to form a bridge above soil pipes in the more erodible subsoil layers was removed. This study showed that knowledge of soil characteristics or topography alone do not explain the distribution of soil pipe collapses as past land use can play a definitive role. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The watersheds along the north coast of California span a wide range of geologic settings, tectonic uplift rates, and historic timber harvest activity. Known trends in how each of these factors influence erosion rates provides an opportunity to examine their relative importance. We analyzed 71 watersheds within nine larger river basins, investigated the factors influencing suspended sediment rating curves (SRCs), investigated how SRCs varied among our study watersheds, and used Random Forest modeling (RFM) to determine which environmental characteristics and land management metrics influence SRC shapes, vertical offsets, and slopes. While SRCs typically take the form of a power function, they also can exhibit threshold or peak relationships. First, we found both power and threshold relationships for the SRCs within our study watersheds. Second, the SRC offsets and slopes systematically varied with regional tectonic uplift. Third, SRC offsets increased in several watersheds following intensive timber harvest events and SRC slopes decreased due to a greater relative increase in suspended sediment concentration at lower flows than higher flows. Our RFM correctly classified 96% of the SRC shapes using two near-channel metrics; near-channel precipitation-sensitive deep-seated landslide susceptibility and near-channel soil erodibility. Our RFM models also showed that timber harvest activity and near-channel local relief can explain 40% of the variability in SRC offsets, whereas tectonic uplift rates, millennial-scale erosion rates, and precipitation patterns explain 40% of the variability in SRC slopes.  相似文献   

15.
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage to water flow from hillslopes to streams. This form of hydrologic connectivity may not explain the hydrologic response of catchments that have network(s) of preferential flow paths, for example, soil pipes, which can provide intrinsic connectivity between hillslopes and streams. Duplex soils are known for developing perched water tables on hillslopes and fostering lateral flows, but the connectivity of localized perched water tables on hillslopes with soil pipes has not been fully established. The objectives of this study were to characterize pipeflow dynamics during storm events, the relationships between perched water tables on hillslopes and pipeflows, and their threshold behaviour. Two well‐characterized catchments in loess soil with a fragipan were selected for study because they contain multiple, laterally extensive (over 100 m) soil pipe networks. Hillslopes were instrumented with shallow wells adjacent to the soil pipes, and the wells and pipe collapse features were equipped with pressure transducers. Perched water tables developed on hillslopes during a wetting up period (October–December) and became well connected spatially across hillslope positions throughout the high flow period (January–March). The water table was not spatially connected on hillslopes during the drying out (April–June) and low flow (July–September) periods. Even when perched water tables were not well‐connected, water flowing through soil pipes provided hydrologic connectivity between upper hillslopes and catchment outlets. Correlations between soil pipeflow and perched water tables depended on the size and location of soil pipes. The threshold relationship between available soil‐moisture index plus storm precipitation and pipeflow was dependent on the season and strongest during dry periods and not high‐flow seasons. This study demonstrated that soil pipes serve as a catchment backbone of preferential flow paths that provide intrinsic connectivity between upper hillslopes and streams.  相似文献   

16.
For sediment yield estimation, intermittent measurements of suspended sediment concentration (SSC) have to be interpolated to derive a continuous sedigraph. Traditionally, sediment rating curves (SRCs) based on univariate linear regression of discharge and SSC (or the logarithms thereof) are used but alternative approaches (e.g. fuzzy logic, artificial neural networks, etc.) exist. This paper presents a comparison of the applicability of traditional SRCs, generalized linear models (GLMs) and non‐parametric regression using Random Forests (RF) and Quantile Regression Forests (QRF) applied to a dataset of SSC obtained for four subcatchments (0·08, 41, 145 and 445 km2) in the Central Spanish Pyrenees. The observed SSCs are highly variable and range over six orders of magnitude. For these data, traditional SRCs performed inadequately due to the over‐simplification of relating SSC solely to discharge. Instead, the multitude of acting processes required more flexibility to model these nonlinear relationships. Thus, alternative advanced machine learning techniques that have been successfully applied in other disciplines were tested. GLMs provide the option of including other relevant process variables (e.g. rainfall intensities and temporal information) but require the selection of the most appropriate predictors. For the given datasets, the investigated variable selection methods produced inconsistent results. All proposed GLMs showed an inferior performance, whereas RF and QRF proved to be very robust and performed favourably for reproducing sediment dynamics. QRF additionally provides estimates on the accuracy of the predictions and thus allows the assessment of uncertainties in the estimated sediment yield that is not commonly found in other methods. The capabilities of RF and QRF concerning the interpretation of predictor effects are also outlined. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Peatland restoration practitioners are keen to understand the role of drainage via natural soil pipes, especially where erosion has released large quantities of fluvial carbon in stream waters. However, little is known about pipe-to-stream connectivity and whether blocking methods used to impede flow in open ditch networks and gullies also work on pipe networks. Two streams in a heavily degraded blanket bog (southern Pennines, UK) were used to assess whether impeding drainage from pipe networks alters the streamflow responses to storm events, and how such intervention affects the hydrological functioning of the pipe network and the surrounding peat. Pipeflow was impeded in half of the pipe outlets in one stream, either by inserting a plug-like structure in the pipe-end or by the insertion of a vertical screen at the pipe outlet perpendicular to the direction of the predicted pipe course. Statistical response variable η2 showed the overall effects of pipe outlet blocking on stream responses were small with η2 = 0.022 for total storm runoff, η2 = 0.097 for peak discharge, η2 = 0.014 for peak lag, and η2 = 0.207 for response index. Both trialled blocking methods either led to new pipe outlets appearing or seepage occurring around blocks within 90 days of blocking. Discharge from four individual pipe outlets was monitored for 17 months before blocking and contributed 11.3% of streamflow. Pipe outlets on streambanks with headward retreat produced significantly larger peak flows and storm contributions to streamflow compared to pipe outlets that issued onto straight streambank sections. We found a distinctive distance-decay effect of the water table around pipe outlets, with deeper water tables around pipe outlets that issued onto straight streambanks sections. We suggest that impeding pipeflow at pipe outlets would exacerbate pipe development in the gully edge zone, and propose that future pipe blocking efforts in peatlands prioritize increasing the residence time of pipe water by forming surface storage higher up the pipe network.  相似文献   

19.
G. Richards  R. D. Moore 《水文研究》2003,17(9):1733-1753
This study examined suspended sediment concentration (SSC) during the ablation seasons of 2000 and 2001 in Place Creek, Canada, a steep, glacier‐fed mountain stream. Comparison of stream flow in Place Creek with that in an adjacent, almost unglacierized catchment provided a rational basis for separating the ablation seasons into nival, nival–glacial, glacial and autumn recession subseasons. Distinct groupings of points in plots of electrical conductivity against discharge supported the validity of the subseasonal divisions in terms of varying hydrological conditions. Relationships between SSC and discharge (Q) varied between the two study seasons, and between subseasons. Hysteresis in the SSC–Q relationship was evident at both event and weekly time‐scales. Some suspended sediment released from pro‐glacial Place Lake (the source of Place Creek) appeared to be lost to channel storage at low flows, especially early in the ablation season, with re‐entrainment at higher flows. Multiple regression models were derived for the subseasons using predictor variables including Q, Q2, the change in Q over the previous 3 h, cumulative discharge over the ablation season, total precipitation over the previous 24 h and SSC measured at 1500 hours as an index value for each day. The models produced adjusted R2 values ranging from 0·71 to 0·91, and provided tentative insights into the differences in SSC dynamics amongst subseasons. Introduction of the index value of SSC significantly improved the model fit during the nival–glacial and glacial subseasons for both years, as it adjusts the model to the current condition of sediment supply. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this study is to analyze suspended sediment transport in a Mediterranean agricultural catchment under traditional soil and water conservation practices. Field measurements were conducted in Can Revull, a small ephemeral catchment (1.03 km2) on the island of Mallorca. This study uses continuous turbidity records to analyse suspended sediment transport regimes, construct and interpret multiple regression models of total suspended sediment concentration (SSC) and of SSC related to stormflow discharge, and assess the sediment loads and yields of three hydrological years (2004–2005 to 2006–2007). An annual average SSC of 17.3 mg l?1, with a maximum of 2270 mg l?1, was recorded in the middle of the winter period when rainfall intensities are high and headwater slopes are ploughed and thus bare. Strong seasonal contrasts of baseflow dynamics associated with different degrees of dilution provide a large scatter in SSC and in the derived rating curves, reflecting that other factors control the supply of suspended sediment. Multiple regression models identify rainfall intensity as the most significant variable in sediment supply. However, under baseflow conditions, physical and biological processes generate sediment in the channel that is subsequently removed during high flow. In contrast, when baseflow is not present, rainfall intensity is the only process that supplies sediment to the channel, mostly from hillslopes. Considering the study period as average in terms of total annual rainfall and intensities, suspended sediment yields were an order of magnitude lower than those obtained in other Mediterranean catchments, a factor that can be related to the historical use of soil conservation practices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号