首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Because organic matter originating in the euphotic zone of the ocean may have a distinctive nitrogen isotope composition (15N/14N), as compared to organic matter originating in terrestrial soils, it may be used to evaluate the relative nitrogen contribution to marine and estuarine sediment. The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of δ15N values for total nitrogen was +2.89 – +9.4‰ with a mean of +6.8‰ and for pore water ammonium, +8.2 – +12.4‰ with a mean of 10.2‰.The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of δ15N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10‰) and terrestrial (+2‰ marines. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains ~ 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains ~ 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.  相似文献   

2.
Stable isotope ratios (δ13C) of total organic carbon were measured in surface sediments from the continental margins of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta. Gulf of Mexico outer-shelf isotope ratios were in the same range as has been reported for Atlantic coastal shelf sediments, ?21.5 to ?20‰. Off large rivers including the Mississippi, Niger and Atchafalaya (Louisiana), δ13C values increased from terrigenous-influenced (around ?24‰) to typically marine (~?20‰) within a few tens of kilometers from shore. This change was accompanied by a decrease in the amount of woody terrigenous plant remains in the sediment. Alaskan continental margin samples from the cold Beaufort Sea had isotopically more negative carbon (?25.5 to ?22.6‰) than did warmer-water sediments. The data indicate that the bulk of organic carbon in Recent sediments from nearshore to outer continental shelves is marine derived.  相似文献   

3.
Seventy-nine δ13C analyses of oceanic particulate matter (> 0·μ) from semi-tropical (Gulf of Mexico, Caribbean and Atlantic) and polar (South Indian Ocean) waters showed that the carbon isotope composition of the particulate matter from the cold polar surface waters was lighter (?24·7 to ?26·0‰) than that from the surface in the semi-tropical regions (?19·8 to ?22·3 ‰), reflecting the temperature effect on the photosynthetic fixation of carbon. δ13C for deep samples (> 330 m) were generally more negative than the surface samples, except in some well-mixed polar areas.A difference both in organic carbon isotopic composition and percentage organic carbon in the POM and the tops of sediment cores was also apparent; a loss of approximately 95 % of incoming carbon and an increase in 13C of several per mille being observed during deposition of particulate matter. This indicates that after settling on the bottom there is extensive diagenesis of the POM by organisms, indicating the non-refractory nature of the organic matter.  相似文献   

4.
The stable isotope ratio of sulfur (34S/32S) in dissolved sulfate and hydrogen sulfide was measured for 20 water samples from two deep hydrocasts from the south-central Black Sea. The isotope ratio of total reduced sulfur was also measured for surface sediment collected below each hydrocast. The range in the δ34S measurements for sulfate was +18.20 to +20.17‰ and for hydrogen sulfide ?38.71 to ?4.85‰. The distribution pattern for δ 34S in both sulfate and sulfide appears to be the result of in situ sulfate reduction.  相似文献   

5.
6.
《Marine Chemistry》2005,93(1):53-73
The provenance of organic matter in sediments from the Mackenzie River and Beaufort Shelf was investigated using the stable carbon and radiocarbon isotopic compositions of bulk organic matter and the stable carbon isotopic compositions of individual organic compounds, including lignin-derived phenols and lipid-derived fatty acids. Most river suspended sediments and shelf surface sediments contained organic carbon characterized by highly depleted Δ14C values that were consistent with average radiocarbon ages exceeding 7000 years. The stable carbon isotopic signatures of lignin phenols were uniformly depleted (−25≥δ13C≥−32‰), indicating the predominant contributions of C3 vascular plant sources. The isotopic compositions of C14 and C16 fatty acids exhibited important contrasts between the river (−36‰ to −40‰) and shelf (−25‰ to −29‰) sediments that were consistent with contributions from freshwater algae and/or vascular plants in the former and marine phytoplankton in the latter. Using 14C isotopic mass balance, the abundances of modern and ancient organic matter were quantitatively constrained. The fate of organic matter in the Beaufort Shelf was explored by normalizing these abundances to the specific surface area of sediments. Ancient organic carbon, which may include old pre-aged soil material as well as fossil bitumen or kerogen, accounted for the majority (∼70%) of the particulate organic matter exported by the Mackenzie River and deposited in surface sediments of the Beaufort Shelf. Modern organic carbon accounted for ∼30% in both river and shelf sediments, with significant contributions from vascular plant-derived materials in both river and shelf samples and from marine algae in the shelf sediments. Respiration (and/or leaching) of particle-bound marine organic matter dominates the carbon metabolism in the Mackenzie Delta/Beaufort Shelf region. However, land-derived pools, including modern carbon derived from vascular plants as well as ancient carbon also appeared to undergo a degree of post-depositional degradation prior to burial in the shelf. These novel source apportionments are reflected in an updated carbon budget for the study area.  相似文献   

7.
The Tait-Gibson parameter, B1, and the refractive index of seawater are estimated from binary solution data. The predicted and experimental values agree closely. The maximum deviations, at S = 40‰, are 1.7 bars for B1 and 0.0001 for the refractive index. The results show that binary solution data, analysed on the basis of the Tammann-Tait-Gibson model for aqueous solutions, can be used to predict the properties of seawater of composition different to that of standard seawater.  相似文献   

8.
Spectrophotometric measurements are reported for the first apparent dissociation constant of hydrogen sulfide in seawater over the temperature range 7.5–25°C and 2–35.8‰ salinity. These data are described by the expression pK1′ = 2.527 ? 0.169 Cl13 + 1359.96/T. The second apparent dissociation constant in potassium chloride solution was estimated potentiometrically using a sulfide specific ion electrode. A value of ~13.6 was found for pK2′ at a KCl concentration of 0.67 M. It is suggested that explicit reference to the sulfide ion, S2?, in describing equilibria in marine waters be dropped in favor of a formulation involving the bisulfide ion, HS?.  相似文献   

9.
Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500–50,000, while δ13C and δD values of methane ranged from ?66.0 to ?63.2‰ VPDB and ?204.6 to ?196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., ?40.8 to ?27.4‰ VPDB and ?41.3 to ?30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3–16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.  相似文献   

10.
The elemental composition and oxygen-containing functional groups contents in the marine humic acids from the five sediment samples from Sagami Bay and Suruga Bay were determined. Kumada's method of classification of soil humic acids was applied to the marine humic acids. The carbon, nitrogen, hydrogen, oxygen and sulfur contents of the marine humic acids were, on average, 52.96, 5.12, 5.79, 34.99 and 1.13%, respectively, without wide variation. In comparison with terrestrial humic acids, the marine ones had relatively lower carbon content and higher hydrogen and nitrogen contents. It is suggested that the marine humic acids have more aliphatic and less aromatic character, as expected from their possible origins, e.g., phytoplankton. The total acidity, carboxyl, phenolic and alcoholic hydroxyl, carbonyl and methoxyl group contents in the marine humic acids were, on average, 5.80, 3.27, 2.53, 2.53, 3.09 and 0.41 milliequivalents per gram of dry ash-free humic acid (me g–1), respectively. From quantitative data on the elemental composition and functional groups of the average marine humic acid, its empirical formula was calculated to be C107H138O20(COOH)9(OH)7 phenolic (OH)7 alcoholic (CO)9(OCH)3N10S. The marine humic acids were similar to the so-called B type of soil humic acids with regard to the distribution of functional groups and spectroscopic properties.  相似文献   

11.
《Marine Geology》2001,172(3-4):197-204
The original stable isotopic composition of low-Mg calcitic planktic foraminifer tests is preserved in Pleistocene shallow-marine carbonates (in the Ryukyu Group; Okinawa, Japan) that have been altered by meteoric diagenesis. Whole-rock analyses indicate depleted isotopic values for both δ13C (−1.9 to −5.4‰) and δ18O (−2.9 to −5.2‰), as well as carbonate mineralogy exclusively composed of low-Mg calcite. However, analysis of carefully-extracted planktic foraminifer tests (Globigerinoides sacculifer) that were separated from these whole-rock samples yield heavier δ13C values (−0.4 to 1.9‰) and δ18O values (−3.2 to −1.0‰). The foraminiferal values themselves and comparison of values of various components suggest that the low-Mg calcite tests preserve the original stable isotopic values. Subsequently, the downcore δ18O change of planktic foraminifers recorded in the Ryukyu Group results from middle Pleistocene glacial–interglacial change. By comparison, isotopic measurements based on whole-rock samples can be obtained diagenetic environmental signals, but misleading with regard to paleoclimatic inferences.  相似文献   

12.
Organic matter in four Quaternary sediment cores from the Gulf of Mexico and one core from the Washington State coast have been analyzed for lignin and stable carbon isotope compositions. Holocene sequences of all five cores contain organic matter with high relative abundances of 13C (δ13C = ?19.0 to ?22.5% versus PDB) and low lignin concentrations, both of which are consistent with a marine origin. Distinctly lower 13C concentrations (δ13C = ?24.0 to ?25.5%) occur in underlying glacial-age sequences from four of the five cores, including the core from the Washington coast where such trends are previously unreported. Although the carbon isotopic compositions of these Pleistocene sediments are typical of predominantly land-derived organic matter, they contain only about 5% of the lignin found in modern sediments of similar δ13C from adjacent continental shelves. The lignin-poor organic matter in the glacial-age deposits appears to be either marine-derived or terrigenous material that likely was depleted in vascular plant debris at the time of deposition.  相似文献   

13.
A general equation is derived for predicting the partial molal volume (pmv) of an electrolyte in seawater, using binary solution data, and seawater density data. The composition of seawater need not be “average” - prediction can be made for any composition. Simpler equations are derived for “average” seawater. The ranges cover S = 0–50‰, t = 0–30°C and p = 1–1,000 bar, subject to the availability of binary solution data. Estimates of the pmv's of a number of electrolytes are made and compared with experimental values and the summed ionic values.  相似文献   

14.
15.
《Marine Chemistry》2001,73(2):97-112
Linked to gas seeps on the Ukrainian shelf (northwestern Black Sea), massive authigenic carbonates form as a result of anaerobic methane oxidation. Lipid distributions in these ‘cold seep’ carbonates and an associated microbial mat were investigated for process markers reflecting the presence and metabolic activity of distinctive methane-related biota. The samples contain free, irregular isoprenoid hydrocarbons, namely the tail-to-tail linked acyclic C20-isoprenoid 2,6,11,15-tetramethylhexadecane (crocetane), its C25-homologue 2,6,10,15,19-pentamethylicosane (PMI), and several unsaturated derivatives thereof. Furthermore, specific acyclic and cyclic C40-isoprenoids were released upon ether cleavage of the polar fraction from the carbonate. The abundance of these compounds indicates a pronounced role of particular Archaea in the biogeochemical cycling of carbon at methane seeps. Stable carbon isotopic analyses of these lipids reveal extraordinary depletions in 13C corresponding to δ-values in the range of −100±30‰ PDB, whereas other compounds show isotopic compositions normally observed for marine lipids (around −30‰ PDB). The isotope data imply that the biosynthesis of the archaeal isoprenoids occurred in situ and involved the utilization of isotopically depleted, i.e. methane-derived, carbon. Apart from archaeal markers, the carbonate and the mat contain authigenic, framboidal pyrite and isotopically depleted fatty acids, namely iso-, and anteiso-branched compounds most likely derived from sulphate-reducing bacteria (SRB). The indications for a tight association of these normally competitive organisms support a model invoking a syntrophic relationship of SRB with Archaea responsible for the anaerobic oxidation of methane. The biomarker patterns obtained from the Black Sea samples were further compared to those from a Oligocene seep carbonate (Lincoln Creek Formation, WA, USA) in order to evaluate their biomarker potential for ancient settings. The prominent occurrence of isotopically light crocetane (−112‰) and PMI (−120‰) meets the findings for the contemporary materials. Thus, isotopically depleted isoprenoids provide diagenetically stable fingerprints for the reconstruction of carbon cycling in both, modern and ancient methane seep systems.  相似文献   

16.
Sediment cores were taken from the Gulf of California, and pore waters recovered by mechanical squeezing. The chemistry and isotopic abundance of sulfur in these pore fluids were compared with coexisting solid phases to deduce the mechanisms involved in pyrite formation. The results suggest that burrowing activities of benthonic organisms supply sulfate sulfur to sediments to depths of approximately 0.5 m from the surface. This is inferred from essentially constant pore water concentration profiles of dissolved ions in horizons where sulfate reduction is demonstrated by the presence of iron sulfides.For a core from Pescadero Basin, it is estimated that beneath the mixed zone, diffusion adds 0.4% sulfur by dry weight of sediment, whereas burial of sulfate adds less than 0.1% sulfur. It is shown that diffusion can add isotopically light sulfur to sediments, due to more rapid relative addition of 32SO42? compared to 34SO42? down a concentration gradient maintained by bacterial processes. The overall net isotopic value of the sulfate so added is δ34S = ?4.5‰. The depth distribution of S-isotope in sulfur is controlled by the balance between a bacterial kinetic isotope effect preferentially removing 32S relative to 34S, and the supply of sulfate by diffusion. The isotopic fractionation factor, α, calculated by a mathematical formulation which takes diffusion into account, is larger (1.060±0.010) than when sulfate reduction is assumed to occur in a closed system (1.035). The larger value is supported by the sulfur isotope distribution in metastable iron sulfide. Essentially, the same open-system α was calculated for a core from Carmen Basin.  相似文献   

17.
The oxygen isotopic composition of the clay fraction in Recent argillaceous sediments in western Europe shows regional differences, the δ18SMOW values varying between + 15.8 and + 21.7‰. This phenomenon is used for sediment-transport studies. In the Rhine-Meuse estuary a landward transport of marine sediments is observed. The clay fraction of the sediments in the Wadden Sea is only for a minor part derived from the rivers Rhine and Meuse.  相似文献   

18.
Humic acids isolated from marine sediments of the Peru continental shelf and from a degraded field diatom population dominated by the diatoms Skeletonema costatum, Nitzschia seviata and Thalassiosira sp. were characterized on the basis of infrared spectra and 13C- and proton-NMR spectra. Aliphatic structures were found to constitute the major fraction of humic acids and they appear to be highly branched. Carbohydrates and to a lesser extent aromatic materials, carbonyl-, ether-, alcohol- and amino groups are important contributors to the structure of marine humic acids. A close relationship was observed between the chemical structure of the sedimentary humic acid and the plankton humic acid.  相似文献   

19.
The distribution of iodine and bromine was examined in sediments which receive inputs of marine and terrigenous organic matter. The I and Br concentrations are directly related to the content of ‘marine’ organic matter defined using carbon/nitrogen ratios. In the Etive sediments both Br and I may be used as an indicator of ‘marine’ organic matter; Br is of general application as the BrCmar ratio (180 × 10?4) is similar to ratios in other sedimentary environments but the use of I is restricted as the ICmar ratio is unlike those in other sediments. Experimental study of iodine sorption clearly shows the importance of decaying marine organic matter and oxygenated conditions in the incorporation of iodine by sediments. This suggests that the mechanism of incorporation of iodine by seston previously proposed is probably an important pathway to sediments. The similarity of Br association with marine organic matter suggests that Br sorption as opposed to residual enrichment may be important for sediment Br accumulation.  相似文献   

20.
The stable isotopic composition(δ~(13)C and δ~(15)N) and carbon/nitrogen ratio(C/N) of particulate organic matter(POM) in the Chukchi and East Siberian shelves from July to September, 2016 were measured to evaluate the spatial variability and origin of POM. The δ~(13)C_(POC) values were in the range of -29.5‰ to-17.5‰ with an average of -25.9‰±2.0‰, and the δ~(15)N_(PN) values ranged from 3.9‰ to 13.1‰ with an average of 8.0‰±1.6‰. The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf, while the δ~(13)C and δ~(15)N values were just the opposite. Abnormally low C/N ratios(4), low δ~(13)C_(POC)(almost-28‰) and high δ~(15)N_(PN)(10‰) values were observed in the Wrangel Island polynya, which was attributed to the early bloom of small phytoplankton. The contributions of terrestrial POM, bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model. The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward, indicating the influence of Russian rivers. The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward, suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf. The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery. A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed, indicating that the net sea ice loss promotes early bloom in the polynya.Given the high fraction of bloom-produced POM, the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号