首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The mean values % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdacqaHapaCaaWaa8qCaeaacaGG% OaacbaGaa8NKbiabgkHiTiaadYgacaGGPaGaa8hiaiGacogacaGGVb% Gaai4Caiaa-bcacaWGRbGaa8NKbiaa-bcacaWGKbGaamiBaaWcbaGa% aGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaa-bcacaqGHbGaae% OBaiaabsgacaWFGaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWbaa% daWdXbqaaiaacIcacaWFsgGaeyOeI0IaamiBaiaacMcacaWFGaGaci% 4CaiaacMgacaGGUbGaa8hiaiaadUgacaWFsgGaa8hiaiaadsgacaWG% SbaaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aaaa!6BC2!\[\frac{1}{{2\pi }}\int\limits_0^{2\pi } {(f - l) \cos kf dl} {\rm{and}} \frac{1}{{2\pi }}\int\limits_0^{2\pi } {(f - l) \sin kf dl}\] (where f and l are respectively the true anomaly and the mean anomaly in the elliptic motion and k is an integer) are given in closed form.  相似文献   

2.
In this article we present a theoretical method for the study of the general three-body problem by computer simulation developed in the Leningrad State University Astronomical Observatory (LSU AO). This method permits statistical methods to be used for studying the behaviour of triple systems. This is achieved by selecting a representative sample of initial conditions which then reveal general features of the evolution.The main results of numerical experiments on the three-body problem carried out at the LSU AO during the past 25 years have been summarized in the reviews by Anosova (1985), Anosova and Orlov (1985), and Anosova (1986).Systematic studies of about 3 × 104 triple systems with negative total energy (E < 0) have yielded the following main results. Most (93.4%) of the systems decay; the decay always occurs after a close triple approach of the components. In a system with unequal masses, the escaping body usually has the smallest mass. A small fraction (4.3%) of stable systems is formed if the angular momentum is non-zero. The qualitative evolution in three-dimensional cases is the same as for planar systems. Small changes in initial conditions sometimes lead to substantial differences in the final outcome. The decay of triple systems is a stochastic process similar to radioactive decay. The estimated mean lifetime is equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (107.1 ± 1.8) crossing times for equal-mass components. Thus, for solar mass components and a typical dimension d = 0.01 pc, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (1.6 ± 1.5) × 106 y, and for triple galaxies with M = 101° M 0 and d = 50 kpc, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (1.8 ± 1.7) × 1011 y. The value % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] decreases with increasing mass dispersion.In this article we also carry out a theoretical analysis of the changes of the integrals of motion in the general three-body problem used as the controls on the calculations. The following basic results have been found: (1) analytical functions of the changes of the integrals of motion during the integration time have been obtained; (2) changes in the integrals of the mass-centre of a triple system do not correlate with the cumulative integration errors; (3) the cumulative changes of the integral of energy are proportional to the sum of squares of the cumulative errors in the coordinates and the velocities of the bodies; (4) the cumulative changes of the square of the total angular momentum are proportional to the product of the square of these cumulative errors.The analysis of the accuracy of computer simulations conducted in LSU AO for the 3 × 104 triple systems with E < 0 is summarized by the following basic qualitative results: (1) the unstable triple systems decay after a mean lifetime % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] 100 or % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] 104 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGObaaaaaa!3C6A!\[\overline h \]t where is a crossing time, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGObaaaaaa!3C6A!\[\overline h \], is a mean integration step After this integration time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] the mean cumulative relative changes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamyraaaaaaa!3D10!\[\overline {DE} \] of the integrals of the energy of the triple systems are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamyraaaaaaa!3D10!\[\overline {DE} \] = (0.9±0.1) × 10–4, and the mean cumulative relative changes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamitaaaaaaa!3D17!\[\overline {DL} \] of the area integrals are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamitaaaaaaa!3D17!\[\overline {DL} \] = (1.0±0.1) × 10–6; the mean values of the cumulative errors % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaamiraiaadkhaaaa!3D2C!\[{Dr}\], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamOvaaaaaaa!3D21!\[\overline {Dv} \] in defining the coordinates (r) and velocities (v) of the bodies (during the total integration time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \]) are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamOCaaaaaaa!3D3D!\[\overline {Dr} \] = 0.5 × 10–3 d, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamODaaaaaaa!3D41!\[\overline {Dv} \] = 0.5 × 10–2 v, where d is the unit of distance, and v is the unit of velocity; the mean local integration errors (of one integration step) are equal to r= 5 × 10–8 d, 6v = 5 × 10–7 v; (2) the process of accumulation of integration errors has a complicated character and correlates strongly with the process of dynamical evolution of the triple systems; (a) because of the strong gravitational interplays of the bodies, the process of the accumulation of the integration errors is very intensive; however, the triple systems with these interplays of the bodies have, as a rule, a small escape time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] t, and the cumulative calculation errors are small too; (b) in the stable triple systems the local integration errors are practically constant during the numerical study of their evolution, and the calculations can be carried out (if it is necessary) during the time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (2–3) × 103 without disturbing the periodical motions of the bodies; (3) thus, in the general three-body problem with different initial conditions, it is not necessary to carry out the computer simulations over long times, as most of the triple systems decay and do not have very long lifetimes; (4) the mean level of the cumulative errors Dr and Dv of the definitions of the coordinates and velocities of bodies in the different triple systems is practically equal.  相似文献   

3.
The method which is used to calculate the dynamical flattenings % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaamisaiabg2da9iaacIcacaWGdbGaeyOeI0YaaSaaaeaacaaIXaaa% baGaaGOmaaaacaGGOaGaamyqaiabgUcaRiaadkeacaGGPaGaaiykai% aac+cacaWGdbaaaa!4717!\[H = (C - \frac{1}{2}(A + B))/C\] of the Earth and Moon meets with difficulties when it applies to Mercury and Venus. In this paper, after the calculation of the dimensionless moment of inertiaC/MR 2 by solving the Emden equation, the effectiveness of the method deriving dynamical flattening from the observed value of the Mercury's obliquity is analysed based on the resonance rotation theory. Some suggestions are made for the future space explorations. Finally, the ranges of dynamical flattening and of the obliquity of Venus are calculated.  相似文献   

4.
A new theory is formulated for the analytic continuation of periodic (and aperiodic) orbits from equilibrium solutions of a two-degree-of-freedom dynamical system in rotating coordinates:% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGab8xDayaacaGaa8xlaiaa-jdacaWFUbGaeqyXduNaa8xpaiaa% -zfadaWgaaWcbaGccaWF4baaleqaaOGaaiilaiqbew8a1zaacaGaey% 4kaSIaaGOmaiaad6gacaWG1bGaeyypa0Jaa8NvamaaBaaaleaakiaa% -LhaaSqabaGccaGGSaGabmiEayaacaGaeyypa0JaamyDaiaacYcace% WG5bGbaiaacqGH9aqpcqaHfpqDaaa!54CD!\[\dot u - 2n\upsilon = V_x ,\dot \upsilon + 2nu = V_y ,\dot x = u,\dot y = \upsilon \]Away from resonance, a family of nonlinear, normal-mode orbits defines an autonomous velocity field u(x, y), u(x, y) represented by convergent algebraic-series expansions in the two position variables. This approach is useful for determining the global structure of solution curves and nonlinear stability of normal modes using Liapunov's direct method. At resonance, the series coefficients are time dependent because stationary modes are incompatible with the equations of motion. By eliminating small divisors, explicit time dependence provides a natural transition from non-resonance to resonance cases within the same theory.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号