首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

2.
Sedna is the first inner Oort cloud object to be discovered. Its dynamical origin remains unclear, and a possible mechanism is considered here. We investigate the parameter space of a hypothetical solar companion which could adiabatically detach the perihelion of a Neptune-dominated TNO with a Sedna-like semimajor axis. Demanding that the TNO’s maximum value of osculating perihelion exceed Sedna’s observed value of 76 AU, we find that the companion’s mass and orbital parameters (m c , a c , q c , Q c , i c ) are restricted to $$m_c>rapprox 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{Q_c}{7850\hbox{ AU}} \frac{q_c}{7850\hbox{ AU}}\right)^{3/2}$$ during the epoch of strongest perturbations. The ecliptic inclination of the companion should be in the range $45{\deg}\lessapprox i_c\lessapprox 135{\deg}$ if the TNO is to retain a small inclination while its perihelion is increased. We also consider the circumstances where the minimum value of osculating perihelion would pass the object to the dynamical dominance of Saturn and Jupiter, if allowed. It has previously been argued that an overpopulated band of outer Oort cloud comets with an anomalous distribution of orbital elements could be produced by a solar companion with present parameter values $$m_c\approx 5\hskip.25em\hbox{M}_{\rm J}\left(\frac{9000\hbox{ AU}}{a_c}\right)^{1/2}.$$ If the same hypothetical object is responsible for both observations, then it is likely recorded in the IRAS and possibly the 2MASS databases.  相似文献   

3.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   

4.
A reversible dynamical system with two degrees-of-freedom is reduced to a second-order, Hamiltonian system under a change of independent variable. In certain circumstances, the reduced order system may be integrated following an orthogonal curvilinear transformation from Cartesian x,y to intrinsic orbital coordinates , . Solutions for the orbit position and true time variables are expressed by: % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadAgacaGGOaGaeqOVdGNaaiilaiabeE7aOjaacMcacaGGSaGa % aeiiaiaadMhacqGH9aqpcaWGNbGaaiikaiabe67a4jaacYcacqaH3o % aAcaGGPaGaaiilaiaabccacaWGKbGaamiDaiabg2da9iabgglaXoaa % dmaabaWaaSaaaeaacaWGibWaa0baaKqaahaacqaH+oaEaeaacaqGYa % aaaOGaam4raiabgUcaRiaadIeadaqhaaqcbaCaaiabeE7aObqaaiaa % ikdaaaGccaWGfbaabaGaaGOmaiaacIcacaWGibGaey4kaSIaamyvai % aacMcaaaaacaGLBbGaayzxaaWaaWbaaSqabKqaGhaacaaIXaGaai4l % aiaaikdaaaGccaWGKbGaeqiXdqhaaa!6498! \[ x = f(\xi ,\eta ),{\rm{ }}y = g(\xi ,\eta ),{\rm{ }}dt = \pm \left[ {\frac{{_\xi ^{\rm{2}} {\ie} + _\eta ^2 }}{{2( + U)}}} \righ \]1446 1040 where U is the potential function, and z is the new independent variable. The functions f, g may be expressed by quadratures when the metric coefficients {\er},{\ie} are specified. Two second-order, partial differential equations specify {\er}, {\ie} and Hamiltonian {\tH}. Auxiliary conditions are needed because the solutions are underdetermined. For example, both sets of curvilinear coordinate lines are orbits when certain dynamical compatibility conditions between U and {\ie} (or {\er}) are satisfied. Alternatively, when orbits cross the parametric curves, the auxiliary condition {\er} = {\ie} specifies a conformal transformation, and the partial differential equation for {\tH} may be reduced to an ordinary differential equation for the orbit curve. In either case, integrability is guaranteed for Lionville dynamical systems. Specific applications are presented to illustrate direct solution for the orbit (e.g., two fixed centers) and inverse solution for the potential.  相似文献   

5.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

6.
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats C ??,?? and C J,Q have been defined. For a black hole, these quantities are negative. The ??dA equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole E, the additional available energy defined as the first free energy function K, and the surface gravity ??, has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\Omega ,\Phi } -C_{J,Q} =\kappa \left[ {\left( {\frac{\partial J}{\partial \kappa }} \right)_{\Omega ,\Phi } \left( {\frac{\partial \Omega }{\partial \kappa }} \right)_{J,Q} +\left( {\frac{\partial Q}{\partial \kappa }} \right)_{\Omega ,\Phi } \left( {\frac{\partial \Phi }{\partial \kappa }} \right)_{J,Q} } \right]$ . This is dubbed as the homogeneous fluid approximation in context of the black holes.  相似文献   

7.
A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where z is the velocity of the meteoroid at height z, its velocity before entrance into the Earth's atmosphere, is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DA0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, 0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.Work performed mainly at the Nuclear Physics Laboratory of the National University of Athens, Greece.  相似文献   

8.
I derive an approximate criterion for the tidal disruption of a “rubble pile” body as it passes close to a planet (or the sun): % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS% baaSqaaiaacogaaeqaaOGaeyisIS7aamWaaeaacaaIYaGaeqyWdihd% caWGWbGccaGGDbWaaeWaaeaadaWcaaqaaiaadkfamiaadchaaOqaai% aadkhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey4k% aSYaaeWaaeaadaWcaaqaaiabeM8a3bqaaiabeM8a3XGaaGimaaaaaO% GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2fa% amaabmaabaWaaSaaaeaacaWGHbaabaGaamOyaaaaaiaawIcacaGLPa% aacaGGSaaaaa!5229!\[\rho _c \approx \left[ {2\rho p]\left( {\frac{{Rp}}{r}} \right)^3 + \left( {\frac{\omega }{{\omega 0}}} \right)^2 } \right]\left( {\frac{a}{b}} \right),\] where ? c is the critical density below which the body will be disrupted, ? p is the density of the planet (or sun), R p is the radius of the planet, r is the periapse distance, Ω is the rotation frequency of the body, Ω0 is the surface orbit frequency about a body of unit density, and a/b is the axis ratio of the body, considered as a prolate ellipsoid. For P/Shoemaker Levy 9, in its passage close to Jupiter in 1992, this expression suggests that the critical density is ~1.2 for a spherical, non-spinning nucleus, but could be >2.5 for a 2:1 elongate body with a typical rotation period of ~10 hours.  相似文献   

9.
B. R. Durney 《Solar physics》1973,30(1):223-234
The two-fluid equations for the solar wind are written down in a simplified form, similar to that suggested by Roberts (1971) for the one-fluid model. The equations are shown to depend only on one parameter, $$K = GM\kappa _e m_p (\varepsilon _\infty T_0 )^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} /4k^2 Fe,$$ , where G is the gravitational constant, M the mass of the star, κ e the thermal electron conductivity, m p the proton mass, k the Boltzman constant, k? T0 the residual energy per particle at infinity and F e the electron-particle flux. For a variety of values of the density and temperature at the base of the corona we compute the solutions of the two-fluid solar wind model and compare the predicted and observed solar wind parameters at the Earth.  相似文献   

10.
In this paper, an efficient algorithm is established for computing the maximum (minimum) angular separation ρ max(ρ min), the corresponding apparent position angles ( $\theta|_{\rho_{\rm max}}$ , $\theta|_{\rho_{\rm min}}$ ) and the individual masses of visual binary systems. The algorithm uses Reed’s formulae (1984) for the masses, and a technique of one-dimensional unconstrained minimization, together with the solution of Kepler’s equation for $(\rho_{\rm max}, \theta|_{\rho_{\rm max}})$ and $(\rho_{\rm min}, \theta|_{\rho_{\rm min}})$ . Iterative schemes of quadratic coverage up to any positive integer order are developed for the solution of Kepler’s equation. A sample of 110 systems is selected from the Sixth Catalog of Orbits (Hartkopf et al. 2001). Numerical studies are included and some important results are as follows: (1) there is no dependence between ρ max and the spectral type and (2) a minor modification of Giannuzzi’s (1989) formula for the upper limits of ρ max functions of spectral type of the primary.  相似文献   

11.
12.
We investigate the ‘equilibrium’ and stability of spherically-symmetric self-similar isothermal blast waves with a continuous post-shock flow velocity expanding into medium whose density varies asr ahead of the blast wave, and which are powered by a central source (a pulsar) whose power output varies with time ast ω?3. We show that:
  1. for ω<0, no physically acceptable self-similar solution exists;
  2. for ω>3, no solution exists since the mass swept up by the blast wave is infinite;
  3. ? must exceed zero in order that the blast wave expand with time, but ?<2 in order that the central source injects a finite total energy into the blast wave;
  4. for 3>ωmin(?)>ω>ωmax(?)>0, where $$\begin{gathered} \omega _{\min } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} + {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} + {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \omega _{\max } (\varphi ){\text{ }} = {\text{ }}2[5{\text{ }} - {\text{ }}\varphi {\text{ }} - {\text{ }}(10{\text{ }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 )^{1/2} ]^2 [2{\text{ }} - {\text{ (10 }} + {\text{ 4}}\varphi {\text{ }} - {\text{ 2}}\varphi ^2 {\text{)}}^{{\text{1/2}}} ]^{ - 2} , \hfill \\ \end{gathered} $$ two critical points exist in the flow velocity versus position plane. The physically acceptable solution must pass through the origin with zero flow speed and through the blast wave. It must also pass throughboth critical points if \(\varphi > \tfrac{5}{3}\) , while if \(\varphi< \tfrac{5}{3}\) it must by-pass both critical points. It is shown that such a solution exists but a proper connection at the lower critical point (for ?>5/3) (through whichall solutions pass with thesame slope) has not been established;
  5. for 3>ω>ωmin(?) it is shown that the two critical points of (iv) disappear. However a new pair of critical points form. The physically acceptable solution passing with zero flow velocity through the origin and also passing through the blast wave mustby-pass both of the new critical points. It is shown that the solution does indeed do so;
  6. for 3>ωmin(?)>ωmax(?)>ω it is shown that the dependence of the self-similar solution on either ω or ? is non-analytic and therefore, inferences drawn from any solutions obtained in ω>ωmax(?) (where the dependence of the solutionis analytic on ω and ?) are not valid when carried over into the domain 3>ωmin(?)>ωmax(?)>ω;
  7. all of the physically acceptable self-similar solutions obtained in 3>ω>0 are unstable to short wavelength, small amplitude but nonself-similar radial velocity perturbations near the origin, with a growth which is a power law in time;
  8. the physical self-similar solutions are globally unstable in a fully nonlinear sense to radial time-dependent flow patterns. In the limit of long times, the nonlinear growth is a power law in time for 5<ω+2?, logarithmic in time for 5>ω+2?, and the square of the logarithm in time for 5=ω+2?.
The results of (vii) and (viii) imply that the memory of the system to initial and boundary values does not decay as time progresses and so the system does not tend to a self-similar form. These results strongly suggest that the evolution of supernova remnants is not according to the self-similar form.  相似文献   

13.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

14.
The mean values % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdacqaHapaCaaWaa8qCaeaacaGG% OaacbaGaa8NKbiabgkHiTiaadYgacaGGPaGaa8hiaiGacogacaGGVb% Gaai4Caiaa-bcacaWGRbGaa8NKbiaa-bcacaWGKbGaamiBaaWcbaGa% aGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaa-bcacaqGHbGaae% OBaiaabsgacaWFGaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWbaa% daWdXbqaaiaacIcacaWFsgGaeyOeI0IaamiBaiaacMcacaWFGaGaci% 4CaiaacMgacaGGUbGaa8hiaiaadUgacaWFsgGaa8hiaiaadsgacaWG% SbaaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aaaa!6BC2!\[\frac{1}{{2\pi }}\int\limits_0^{2\pi } {(f - l) \cos kf dl} {\rm{and}} \frac{1}{{2\pi }}\int\limits_0^{2\pi } {(f - l) \sin kf dl}\] (where f and l are respectively the true anomaly and the mean anomaly in the elliptic motion and k is an integer) are given in closed form.  相似文献   

15.
Closely spaced microphotometer tracings parallel to the dispersion of one excellent frame of a K-line time sequence have been utilized for a study of the nature of the K2v , K2R intensities in the case of the solar chromosphere. The frequency of occurrence of the categories of intensity ratio are as follows: per cent; per cent; per cent; per cent; per cent. Two types of absorbing components are postulated to explain the pattern of observed K2v , k2R intensity ratios. One component with minor Doppler displacements acting on the normal K232 profile, where K2V >K2R , produces the cases K2v K2R , K2v = K2R , K2v <K2R . The other component arises from dark condensations which are of size 3500 kms as seen in K2R . They have principally large down flowing velocities in the range 5–8 km/sec and are seen on K3 spectroheliograms with sizes of about 5000 kms, within the coarse network of emission. These dark condensations give rise to the situation K2R = 0.K2-line widths are measured for all tracings where K2v , K2R are measurable simultaneously. The distribution curve of these widths is extremely sharp. The K2 emission source is identified with the bright fine mottles visible on the surface. Evidence for this interpretation comes from the study of auto-correlation functions of K2 intensity variations and the spacing between the bright fine mottles from both spectrograms and spectroheliograms. The life time of the fine mottling is 200 sec.The supergranular boundaries which constitute the coarse network come in two intensity classes. A low intensity network has the fine mottles as its principal contributor to the K emission. When the network is bright, the enhancement is caused by increased K emission due to the accumulation of magnetic fields at the supergranule boundary. The K2 widths of the low intensity supergranular boundary agree with the value found for the bright mottles. Those for the brighter network are lower than this value, similar to the K2 widths as seen in the active regions.It is concluded that bright fine mottling is responsible for the relation, found by Wilson and Bappu, between K emission line widths and absolute magnitudes of the stars.The paper discusses the solar cycle equivalents that stellar chromospheres can demonstrate and indicates a possible line of approach for successful detection of cyclic activity in stellar chromospheres.  相似文献   

16.
The emission spectrum of comet Skoritchenko–George (C/1989 VI), unusual in its information content, was obtained on February 26.7 UT, 1990, with the use of a TV scanner installed on the 6-m BTA reflector of the Special Astronomical Observatory of the Russian Academy of Sciences (SAO RAS) in Nizhni Arkhyz. Detailed identification of the emission lines of this comet was made. The observed spectrum contains 311 emission lines, including those of the molecules. Among others, the lines of the negative carbon C 2 - ion and the lines corresponding to the electron transition in the neutral CO molecule are discovered. The presence of a large number of lines of the neutral CO molecule (the Asundi bands and the triplet bands) in the visible region is one of the uncommon features of the emission spectrum of this comet. The triplet lines : 15–3, 13–2, 11–2, 9–1, 8–1, 7–1, 7–0, 5–0, 4–0; : 7–0, 6–0, 5–0; and a" : 11–1 (K = 3, 4); 16–4 (K= 0, 1, 2, 4); 9-0 (K= 0, 1, 2); 8–0 (K= 0) were identified for the first time. Prior to this work, the lines of CO in the visible range were observed only in the spectrum of comet C/1979 VI (Bradfield) in 1989.  相似文献   

17.
S.-X. Chen  B. Li  L.-D. Xia  Y.-J. Chen  H. Yu 《Solar physics》2014,289(5):1663-1681
Fundamental standing modes and their overtones play an important role in coronal seismology. We examine the effects of a significant field-aligned flow on standing modes that are supported by coronal loops, which are modeled here as cold magnetic slabs. Of particular interest are the period ratios of the fundamental to its (n?1)th overtone [P 1/nP n ] for kink and sausage modes, and the threshold half-width-to-length ratio for sausage modes. For standing kink modes, the flow significantly reduces P 1/nP n in general, the effect being particularly strong for higher n and weaker density contrast [ $\rho_{0}/\rho_{\rm e}$ ] between loops and their surroundings. That said, even when $\rho_{0}/\rho_{\rm e}$ approaches infinity, this effect is still substantial, reducing the minimal P 1/nP n by up to 13.7?% (24.5?%) for n=2 (n=4) relative to the static case, when the Alfvén Mach number [M A] reaches 0.8, where M A measures the loop flow speed in units of the internal Alfvén speed. Although it is not negligible for standing sausage modes, the flow effect in reducing P 1/nP n is not as strong. However, the threshold half-width-to-length ratio is considerably higher in the flowing case than in its static counterpart. For $\rho_{0}/\rho_{\rm e}$ in the range [9,1024] and M A in the range [0,0.5], an exhaustive parameter study yields that this threshold is well fitted by $(d/L)_{\rm cutoff, fit} = \frac{1}{2}\sqrt{\frac{1}{\rho_{0}/\rho_{\rm e}-1}} \exp (3.7 M_{\mathrm{A}}^{2} )$ , which involves the two parameters in a simple way. This allows one to analytically constrain the combination $(\rho_{0}/\rho_{\rm e}, M_{\mathrm {A}})$ for a loop with a known width-to-length ratio when a standing sausage oscillation is identified. It also allows one to examine the idea of partial sausage modes in more detail, and the flow is found to significantly reduce the spatial extent where partial modes are allowed.  相似文献   

18.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

19.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

20.
If fluctuations in the density are neglected, the large-scale, axisymmetric azimuthal momentum equation for the solar convection zone (SCZ) contains only the velocity correlations and where u are the turbulent convective velocities and the brackets denote a large-scale average. The angular velocity, , and meridional motions are expanded in Legendre polynomials and in these expansions only the two leading terms are retained (for example, where is the polar angle). Per hemisphere, the meridional circulation is, in consequence, the superposition of two flows, characterized by one, and two cells in latitude respectively. Two equations can be derived from the azimuthal momentum equation. The first one expresses the conservation of angular momentum and essentially determines the stream function of the one-cell flow in terms of : the convective motions feed angular momentum to the inner regions of the SCZ and in the steady state a meridional flow must be present to remove this angular momentum. The second equation contains also the integral indicative of a transport of angular momentum towards the equator.With the help of a formalism developed earlier we evaluate, for solid body rotation, the velocity correlations and for several values of an arbitrary parameter, D, left unspecified by the theory. The most striking result of these calculations is the increase of with D. Next we calculate the turbulent viscosity coefficients defined by whereC ro 0 and C o 0 are the velocity correlations for solid body rotation. In these calculations it was assumed that 2 was a linear function of r. The arbitrary parameter D was chosen so that the meridional flow vanishes at the surface for the rotation laws specified below. The coefficients v ro i and v 0o i that allow for the calculation of C ro and C 0o for any specified rotation law (with the proviso that 2 be linear) are the turbulent viscosity coefficients. These coefficients comply well with intuitive expectations: v ro 1 and –v 0o 3 are the largest in each group, and v 0o 3 is negative.The equations for the meridional flow were first solved with 0 and 2 two linear functions of r ( 0 1 = – 2 × 10 –12 cm –1) and ( 2 1 = – 6 × 10 12 cm –1). The corresponding angular velocity increases slightly inwards at the poles and decreases at the equator in broad agreement with heliosismic observations. The computed meridional motions are far too large ( 150m s–1). Reasonable values for the meridional motions can only be obtained if o (and in consequence ), increase sharply with depth below the surface. The calculated meridional motion at the surface consists of a weak equatorward flow for gq < 29° and of a stronger poleward flow for > 29°.In the Sun, the Taylor-Proudman balance (the Coriolis force is balanced by the pressure gradient), must be altered to include the buoyancy force. The consequences of this modification are far reaching: is not required, now, to be constant along cylinders. Instead, the latitudinal dependence of the superadiabatic gradient is determined by the rotation law. For the above rotation laws, the corresponding latitudinal variations of the convective flux are of the order of 7% in the lower SCZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号