首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
It is suggested that gravitationally bound systems in the Universe can be characterized by a set of actions ?(s). The actions $$\hbar ^{\left( s \right)} = \left( {{\hbar \mathord{\left/ {\vphantom {\hbar {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right. \kern-\nulldelimiterspace} {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}}}} \right)^{s/6} \left( {\frac{1}{{2\pi }}\frac{{C^5 }}{{GH_0^2 }}} \right)$$ ,derived from general theoretical consideration, are only determined by the fundamental physical constants (Planck's action ?, the velocity of lightC, gravitational constantG, and Hubble's constantH 0) and a scale parameters. It is shown thats=1, 2, and 3 correspond, respectively, to the scales of galaxies, stars, and larger asteroids. The spectra of the characteristic angular momenta and masses for gravitationally bound systems in the Universe are estimated byJ (s) andM (s) =(? (s) /G)1/2. Taken together, an angular momentum-mass relation is obtained,J (s)=A(M(s))2, where \(A = G/C\alpha ,{\text{ }}\alpha \simeq \tfrac{{\text{1}}}{{{\text{137}}}}\) , for the astronomical systems observed on every scale. ThisJ-M relation is consistent with Brosche's empirical relation (Brosche, 1974).  相似文献   

2.
A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where z is the velocity of the meteoroid at height z, its velocity before entrance into the Earth's atmosphere, is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DA0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, 0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.Work performed mainly at the Nuclear Physics Laboratory of the National University of Athens, Greece.  相似文献   

3.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   

4.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

5.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

6.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

7.
A reversible dynamical system with two degrees-of-freedom is reduced to a second-order, Hamiltonian system under a change of independent variable. In certain circumstances, the reduced order system may be integrated following an orthogonal curvilinear transformation from Cartesian x,y to intrinsic orbital coordinates , . Solutions for the orbit position and true time variables are expressed by: % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadAgacaGGOaGaeqOVdGNaaiilaiabeE7aOjaacMcacaGGSaGa % aeiiaiaadMhacqGH9aqpcaWGNbGaaiikaiabe67a4jaacYcacqaH3o % aAcaGGPaGaaiilaiaabccacaWGKbGaamiDaiabg2da9iabgglaXoaa % dmaabaWaaSaaaeaacaWGibWaa0baaKqaahaacqaH+oaEaeaacaqGYa % aaaOGaam4raiabgUcaRiaadIeadaqhaaqcbaCaaiabeE7aObqaaiaa % ikdaaaGccaWGfbaabaGaaGOmaiaacIcacaWGibGaey4kaSIaamyvai % aacMcaaaaacaGLBbGaayzxaaWaaWbaaSqabKqaGhaacaaIXaGaai4l % aiaaikdaaaGccaWGKbGaeqiXdqhaaa!6498! \[ x = f(\xi ,\eta ),{\rm{ }}y = g(\xi ,\eta ),{\rm{ }}dt = \pm \left[ {\frac{{_\xi ^{\rm{2}} {\ie} + _\eta ^2 }}{{2( + U)}}} \righ \]1446 1040 where U is the potential function, and z is the new independent variable. The functions f, g may be expressed by quadratures when the metric coefficients {\er},{\ie} are specified. Two second-order, partial differential equations specify {\er}, {\ie} and Hamiltonian {\tH}. Auxiliary conditions are needed because the solutions are underdetermined. For example, both sets of curvilinear coordinate lines are orbits when certain dynamical compatibility conditions between U and {\ie} (or {\er}) are satisfied. Alternatively, when orbits cross the parametric curves, the auxiliary condition {\er} = {\ie} specifies a conformal transformation, and the partial differential equation for {\tH} may be reduced to an ordinary differential equation for the orbit curve. In either case, integrability is guaranteed for Lionville dynamical systems. Specific applications are presented to illustrate direct solution for the orbit (e.g., two fixed centers) and inverse solution for the potential.  相似文献   

8.
An attempt has been made to obtain an expression for the rate of stellar mass loss using dimensional analysis. The best expression for O and B stars is of the form: $$\dot M = A'{\text{ }}\left( {\frac{1}{{G^{1/2} c^4 }}} \right){\text{ }}L^{\text{2}} {\text{ (}}R/M)^{{\text{3/2}}} .$$ It is also found thatA′ increases as one goes from B→O stars and from O→O(f)→O(f)), but is not sensitive to luminosity.  相似文献   

9.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

10.
I derive an approximate criterion for the tidal disruption of a “rubble pile” body as it passes close to a planet (or the sun): % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS% baaSqaaiaacogaaeqaaOGaeyisIS7aamWaaeaacaaIYaGaeqyWdihd% caWGWbGccaGGDbWaaeWaaeaadaWcaaqaaiaadkfamiaadchaaOqaai% aadkhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey4k% aSYaaeWaaeaadaWcaaqaaiabeM8a3bqaaiabeM8a3XGaaGimaaaaaO% GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2fa% amaabmaabaWaaSaaaeaacaWGHbaabaGaamOyaaaaaiaawIcacaGLPa% aacaGGSaaaaa!5229!\[\rho _c \approx \left[ {2\rho p]\left( {\frac{{Rp}}{r}} \right)^3 + \left( {\frac{\omega }{{\omega 0}}} \right)^2 } \right]\left( {\frac{a}{b}} \right),\] where ? c is the critical density below which the body will be disrupted, ? p is the density of the planet (or sun), R p is the radius of the planet, r is the periapse distance, Ω is the rotation frequency of the body, Ω0 is the surface orbit frequency about a body of unit density, and a/b is the axis ratio of the body, considered as a prolate ellipsoid. For P/Shoemaker Levy 9, in its passage close to Jupiter in 1992, this expression suggests that the critical density is ~1.2 for a spherical, non-spinning nucleus, but could be >2.5 for a 2:1 elongate body with a typical rotation period of ~10 hours.  相似文献   

11.
The discovery of ‘twin quasistellar objects’ arose interests among astronomers and astrophysicists to study gravitational lensing problems. The deviation of light from its straight line path is caused by two sources according to the general theory of relativity: (i) the presence of massive objects, i.e. the presence of gravitational field and (ii) the presence of a ‘vacuum field’ which arises because there is a non-zero cosmological vacuum energy. Recently, the research on the relationship between cosmological constant and gravitational lensing process is rather active (see reference [1, 2, 3]. According to the Kottler space time metric, we have deduced an explicit representation of the angular deviation of light path. The deviation term is found to be simply , where M is the mass of the ‘astronomical lens’, rmin is the distance between the point of nearest approach and the centre of M, other symbols have their usual meaning. The presence of this term may be meaningful to the study of cosmological constant using the concept of gravitational lensing; however more sophisticated analysis awaits. Consider a signal radar to be sent from one planet to another. We have found that the radar echo delay contributed by the existence of the cosmological constant Λ is expressible as This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
I derive an approximate criterion for the tidal disruption of a rubble pile body as it passes close to a planet (or the sun): % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS% baaSqaaiaacogaaeqaaOGaeyisIS7aamWaaeaacaaIYaGaeqyWdihd% caWGWbGccaGGDbWaaeWaaeaadaWcaaqaaiaadkfamiaadchaaOqaai% aadkhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey4k% aSYaaeWaaeaadaWcaaqaaiabeM8a3bqaaiabeM8a3XGaaGimaaaaaO% GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2fa% amaabmaabaWaaSaaaeaacaWGHbaabaGaamOyaaaaaiaawIcacaGLPa% aacaGGSaaaaa!5229!\[\rho _c \approx \left[ {2\rho p]\left( {\frac{{Rp}}{r}} \right)^3 + \left( {\frac{\omega }{{\omega 0}}} \right)^2 } \right]\left( {\frac{a}{b}} \right),\] where c is the critical density below which the body will be disrupted, p is the density of the planet (or sun), R p is the radius of the planet, r is the periapse distance, is the rotation frequency of the body, 0 is the surface orbit frequency about a body of unit density, and a/b is the axis ratio of the body, considered as a prolate ellipsoid. For P/Shoemaker Levy 9, in its passage close to Jupiter in 1992, this expression suggests that the critical density is ~1.2 for a spherical, non-spinning nucleus, but could be >2.5 for a 2:1 elongate body with a typical rotation period of ~10 hours.  相似文献   

13.
We investigate a method to test whether a numerically computed model coronal magnetic field \({\boldsymbol {B}}\) departs from the divergence-free condition (also known as the solenoidality condition). The test requires a potential field \({\boldsymbol {B}}_{0}\) to be calculated, subject to Neumann boundary conditions, given by the normal components of the model field \({\boldsymbol {B}}\) at the boundaries. The free energy of the model field may be calculated using \(\frac{1}{2\mu _{0}}\int ({\boldsymbol {B}}-{\boldsymbol {B}}_{0})^{2}\mathrm{d}V\), where the integral is over the computational volume of the model field. A second estimate of the free energy is provided by calculating \(\frac{1}{2\mu _{0}}\int {\boldsymbol {B}}^{2}\,\mathrm{d}V-\frac{1}{2\mu _{0}}\int {\boldsymbol {B}}_{0}^{2}\,\mathrm{d}V\). If \({\boldsymbol {B}}\) is divergence free, the two estimates of the free energy should be the same. A difference between the two estimates indicates a departure from \(\nabla \cdot {\boldsymbol {B}}=0\) in the volume. The test is an implementation of a procedure proposed by Moraitis et al. (Solar Phys.289, 4453, 2014) and is a simpler version of the Helmholtz decomposition procedure presented by Valori et al. (Astron. Astrophys.553, A38, 2013). We demonstrate the test in application to previously published nonlinear force-free model fields, and also investigate the influence on the results of the test of a departure from flux balance over the boundaries of the model field. Our results underline the fact that, to make meaningful statements about magnetic free energy in the corona, it is necessary to have model magnetic fields that satisfy the divergence-free condition to a good approximation.  相似文献   

14.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

15.
We construct a theory of the equilibrium figure and gravitational field of the Galilean satellite Io to within terms of the second order in the small parameter α. We show that to describe all effects of the second approximation, the equation for the figure of the satellite must contain not only the components of the second spherical function, but also the components of the third and fourth spherical functions. The contribution of the third spherical function is determined by the Love number of the third order h3, whose model value is 1.6582. Measurements of the third-order gravitational moments could reveal the extent to which the hydrostatic equilibrium conditions are satisfied for Io. These conditions are J3=C32=0 and C31/C33=?6. We have calculated the corrections of the second order of smallness to the gravitational moments J2 and C22. We conclude that when modeling the internal structure of Io, it is better to use the observed value of k2 than the moment of inertia derived from k2. The corrections to the lengths of the semiaxes of the equilibrium figure of Io are all positive and equal to ~64.5, ~26, and ~14 m for the a, b, and c axes, respectively. Our theory allows the parameters of the figure and the fourth-order gravitational moments that differ from zero to be calculated. For the homogeneous model, their values are:\(s_4 = \frac{{885}}{{224}}\alpha ^2 ,s_{42} = - \frac{{75}}{{224}}\alpha ^2 ,s_{44} = \frac{{15}}{{896}}\alpha ^2 ,J_4 = - \frac{{885}}{{224}}\alpha ^2 ,C_{42} = \frac{{75}}{{224}}\alpha ^2 ,C_{44} = \frac{{15}}{{896}}\alpha ^2 \).  相似文献   

16.
We have studied the effect of the flow in the accretion disk. The specific angular momentum of the disk is assumed to be constant and the polytropic relation is used. We have solved the structure of the disk and the flow patterns of the irrotational perfect fluid.As far as the obtained results are concerned, the flow does not affect the shape of the configuration in the bulk of the disk, although the flow velocity reaches even a half of the sound velocity at the inner edge of the disk. Therefore, in order to study accretion disk models with the moderate mass accretion rate—i.e.,
  相似文献   

17.
For the theory described by the action and taking the FRW flat space metric we find an exact non-singular de Sitter model universe exp(t 2), with . It is also proved that the standard general relativity de Sitter cosmology , >0 is also a model of this higher derivative theory of gravity. If the metric is conformally flatS could describe a consistent quantum theory and its classical solutions would correspond to cosmological models in this theory.This work was supported in part by CONACYT grand P228CCOX891723, and DGICSA SEP grant C90-03-0347.  相似文献   

18.
19.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

20.
Celestial Mechanics and Dynamical Astronomy - Consider the perturbedN-body problem $$Z_k = - \gamma \sum\limits_{\mathop {j \ne k}\limits^{j = 1} }^N {\frac{{Z_k - Zj}}{{|Z_k - Zj|^3 }}} + P_k...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号