首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Estimation of Rapidly Time-Varying Sparse Channels   总被引:2,自引:0,他引:2  
The estimation of sparse shallow-water acoustic communication channels and the impact of estimation performance on the equalization of phase coherent communication signals are investigated. Given sufficiently wide transmission bandwidth, the impulse response of the shallow-water acoustic channel is often sparse as the multipath arrivals become resolvable. In the presence of significant surface waves, the multipath arrivals associated with surface scattering fluctuate rapidly over time, in the sense that the complex gain, the arrival time, and the Dopplers of each arrival all change dynamically. A sparse channel estimation technique is developed based on the delay-Doppler-spread function representation of the channel. The delay-Doppler-spread function may be considered as a first-order approximation to the rapidly time-varying channel in which each channel component is associated with Doppler shifts that are assumed constant over an averaging interval. The sparse structure of the delay-Doppler-spread function is then exploited by sequentially choosing the dominant components that minimize a least squares error. The advantage of this approach is that it captures both the channel structure as well as its dynamics without the need of explicit dynamic channel modeling. As the symbols are populated with the sample Dopplers, the increase in complexity depends on the channel Doppler spread and can be significant for a severely Doppler-spread channel. Comparison is made between nonsparse recursive least squares (RLS) channel estimation, sparse channel impulse response estimation, and estimation using the proposed approach. The results are demonstrated using experimental data. In training mode, the proposed approach shows a 3-dB reduction in signal prediction error. In decision-directed mode, it improves significantly the robustness of the performance of the channel-estimate-based equalizer against rapid channel fluctuations.  相似文献   

2.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

3.
Computer simulations are carried out to study the feasibility of an adaptive equalizer applied to an hydroacoustic data-transmission channel. The channel is examined with a comprehensive acoustical model to acquire worst-case examples of the ocean acoustic transmission channel. The equalizer performance is investigated by simulations with a computer-generated channel response. Equalizer behavior in a mobile time-variant environment is also studied by use of a simplified, time-discrete multipath channel model. A stochastic gradient lattice equalizer is simulated for a channel which varies due to movement of the transmitter platform. The equalizer was able to track a velocity of up to 0.4 m/s for a favorable transmission geometry, using a transmitter beamwidth of 10°. The results demonstrate the feasibility of coherent modulation schemes for medium-distance ocean acoustic telemetry. It was found that small beamwidths are imperative in maintaining signal coherence and in facilitating adaptive equalization. In particular, narrow-beam transducers will reduce equalizer complexity as well as the frequency spread  相似文献   

4.
A submerged acoustic source radiates narrowband Gaussian noise. Its signal propagates to a remote, large aperture vertical array over a multipath channel whose characteristics may or may not be fully known. The primary concern of this study is the accuracy of source depth estimates obtainable from the array output. Cramer-Rao bounds for the depth estimate are calculated. When the velocity profile is known exactly, the value of the bound is quite insensitive to the precise form of the velocity profile. A bound calculated from a constant velocity profile yields an excellent approximation for many situations likely to be encountered in practice. Introduction of an unknown parameter into the velocity profile has little effect on the Cramer-Rao bound for depth. However, a maximum likelihood estimator of depth working with an inaccurate value of the unknown parameter performs poorly. To obtain satisfactory performance, one must estimate the unknown parameters along with the source depth. Simulations demonstrate the success of this approach  相似文献   

5.
6.
Reliable,with high data rate,acoustic communication in time-varying,multipath shallow water environment is a hot research topic recently.Passive time reversal communication has shown promising results in improvement of the system performance.In multiuser environment,the system performance is significantly degraded due to the interference among different users.Passive time reversal can reduce such interference by minimizing the cross-correlated version of channel impulse response among users,which can be realized by the well-separated users in depth.But this method also has its shortcomings,even with the absence of relative motion,the minimization sometimes may be impossible because of the time-varying environment.Therefore in order to avoid the limitation of minimizing the cross-correlated channel function,an approach of passive time reversal based on space-time block coding (STBC) is presented in this paper.In addition,a single channel equalizer is used as a post processing technique to reduce the residual symbol interference.Experimental results at 13 kHz with 2 kHz bandwidth demonstrate that this method has better performance to decrease bit error rate and improve signal to noise ratio,compared with passive time reversal alone or passive time reversal combined with equalization.  相似文献   

7.
时变多径水声信道的仿真研究   总被引:1,自引:0,他引:1  
本文针对浅海水声信道的时变特性,基于射线理论引入海洋参数——强度起伏参数Φ、不均匀度参数A,建立有效的时变多径信道模型,并采用Matlab工具进行仿真.仿真结果表明,该模型相比于确定性模型更容易理解、更真实.文中给出的模型和结论能够为实际通信系统中发射接收机深度等的选择和设计提供一定的参考和依据,有助于对水声信道的了解.  相似文献   

8.
水声信道中一种抗多途跳频通信的研究   总被引:3,自引:0,他引:3  
水声通道系统是当代海洋开发和海洋环境立体监测中的重要技术组成部分,广泛应用于海洋监测、海洋资源勘探和开发等方面。然而,水声信道的随机起伏、时-空-频变的多途特征使水声通信技术成为当代最为复杂的通信技术之一。本文介绍近年来在高速水声通信方面的一些研究进展,讨论了一种利用高速数字信号处理器(DSP)实现水声信道跳频通信的方案,并探讨了该方案在调制信号设计及信号处理实现上所采用的关键技术。  相似文献   

9.
李焜  方世良 《海洋工程》2015,29(1):105-120
The conventional matched field processing (MFP) uses large vertical arrays to locate an underwater acoustic target. However, the use of large vertical arrays increases equipment and computational cost, and causes some problems such as element failures, and array tilting to degrade the localization performance. In this paper, the matched field localization method using two-hydrophone is proposed for underwater acoustic pulse signals with an unknown emitted signal waveform. Using the received signal of hydrophones and the ocean channel pulse response which can be calculated from an acoustic propagation model, the spectral matrix of the emitted signal for different source locations can be estimated by employing the method of frequency domain least squares. The resulting spectral matrix of the emitted signal for every grid region is then multiplied by the ocean channel frequency response matrix to generate the spectral matrix of replica signal. Finally, the matched field localization using two-hydrophone for underwater acoustic pulse signals of an unknown emitted signal waveform can be estimated by comparing the difference between the spectral matrixes of the received signal and the replica signal. The simulated results from a shallow water environment for broadband signals demonstrate the significant localization performance of the proposed method. In addition, the localization accuracy in five different cases are analyzed by the simulation trial, and the results show that the proposed method has a sharp peak and low sidelobes, overcoming the problem of high sidelobes in the conventional MFP due to lack of the number of elements.  相似文献   

10.
Two adaptive algorithms for multipath time delay estimation   总被引:1,自引:0,他引:1  
The problem of time delay estimation (TDE) with multipath transmissions arises often in many sonar and radar systems. Two adaptive algorithms based on a parameter estimation approach are proposed to estimate the difference in arrival times of a signal at two separated sensors in the presence of multipath propagation. The first method uses an adaptive IIR filter to eliminate the multipath signal in each transmission channel prior to applying a constrained delay estimation algorithm to extract the time difference between the two received outputs. The second employs two constrained adaptive FIR filters to perform equalization of the multipath arrivals, and time delay is then derived using a constrained delay estimator similar to that in the first method. Computer simulations are presented to compare and contrast the tracing capability and convergence behavior of these multipath TDE methods  相似文献   

11.
A high-resolution t-ω estimator, termed the Wigner distribution (WD), is shown to form a sound basis for representing nonstationary acoustic returns. Signal returns are modeled as the output of a time-variant random filter where the WD of the nonstationary signal return defines a random process whose expectation reduces to the instantaneous power spectral density defined for dispersive communication channels. From the WD, a set of relations describing time-variant channel effects on spread-spectrum and diversity transmissions are developed. These relations are shown to be useful in comparing spreading techniques under differing channel conditions and for estimating channel-imposed bounds on the spreading parameters required for effective transmission. A mapping from the Wigner distribution to the cycle spectrum is shown to produce cyclic correlations characteristic of the modulation rate. The WD-based formulation is applied to an example of spread-spectrum transmission through a reverberation-limited channel  相似文献   

12.
Active sonar systems operating in shallow-water environments are often faced with high numbers of false alarms, generically referred to as clutter, arising from among other sources bottom scattering that results in heavy tails in the matched filter envelope probability density function compared with the Rayleigh distribution. In this paper, the effect of multipath propagation on the envelope statistics (i.e., the disparity from the Rayleigh distribution) is modeled through the use of the -distribution where the shape and scale parameters are formed from the autocorrelation function of the transmit waveform, the multipath structure, and the strength and spatial density of the bottom scatterers. Use of the -distribution is justified by showing that it is the limiting distribution of the sum of independent but not identically distributed -distributed random variables, which is representative of multipath when the bottom produces -distributed backscatter. The shape parameter, which drives the clutter statistics, is seen to be inversely proportional to bandwidth at bandwidths low enough that the multipath is not resolved and again at bandwidths high enough that all of the paths are resolved. As has been previously reported by LePage [IEEE J. Ocean. Eng., vol. 29, no. 2, pp. 330-346, 2004], multipath is shown to make clutter statistics more Rayleigh-like, which in this analysis equates to an increase in the -distribution shape parameter. The model is used to evaluate the effect on clutter statistics of varying environmental characterizations and system configurations where it is seen that, for a constant sound-speed profile, increasing the vertical aperture of the sonar, the center frequency, or surface roughness can lead to less multipath and, therefore, a reduction in the -distribution shape parameter and an increase in the probability of false alarm.  相似文献   

13.
Underwater acoustic communication in the multipath environment encountered in shallow water is restricted mostly by signal fading. It degrades the signal detection and time synchronization required for reliable acoustic communication. An approach to time synchronization and to the frequency diversity method is presented. A communication algorithm for obtaining a reliable acoustic underwater link, and offering an easy-to-implement decoding scheme is introduced, and system realization is described  相似文献   

14.
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging.This paper presents a novel method for realizing the field monitoring of channel siltation in real time.The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle.By use of the multipath propagation structure of underwater acoustic channel,the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths.Bistatic transducer pairs are employed to transmit and receive the acoustic signals,and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver.The WRELAX (Weighted Fourier transform and RELAX) algorithm is used to obtain the high resolution estimation of multipath time delay.To examine the feasibility of the presented method and the accuracy and precision of the developed system,a series of sea trials are conducted in the southwest coast area of Dalian City,north of the Yellow Sea.The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM,and the uncertainty is smaller than ±0.06 m.Compared with the existing means for measuring the silt thickness,the present method is innovative,and the system is stable,efficient and provides a better real-time performance.It especially suits monitoring the narrow channel with rapid changes of siltation.  相似文献   

15.
It is shown that the performance of a conventional matched filter can be improved if the reference (replica) channel compensates for the distortion by the ocean medium. A model-based matched filter is generated by correlating the received signal with a reference channel that consists of the transmitted signal convolved with the impulse response of the medium. The channel impulse responses are predicted with a broadband propagation model using in situ sound speed measured data and archival bottom loss data. The relative performance of conventional and model-based matched filter processing is compared for large time-bandwidth-product linear-frequency-modulated signals propagating in a dispersive waveguide. From ducted propagation measurements conducted in an area west of Sardinia, the model-based matched filter localizes the depths of both the source and receiving array and the range between them. The peak signal-to-noise ratio for the model-based matched filter is always larger than that of the conventional filter  相似文献   

16.
Numerical calculation of acoustic field perturbation expressions can be used to predict fluctuations after propagation through ocean sound-speed structures, but before the onset of multipath. The general form of the expressions for signal spectra or correlation functions allow numerical evaluation for an unlimited quantity of vector wave-number spectral models of refractive index. In order to help define the bounds of applicability of the theory, log-intensity fluctuation variances have been calculated for three major situations: ocean internal waves, ocean turbulence, and continuous strong large-scale turbulence. Propagation through ocean thermocline internal waves, realistically weak thermocline turbulence, and unrealistically strong turbulence show that scintillations of intensity can be predicted and understood to first order up to ranges of tens of kilometers, given the proper transmission geometry. Internal wave effects dominate over any effects from expected microstructure. Nonhorizontal transmission yields small fluctuations, but eventually refractive effects of the sound channel will contribute some additional spatial variability and multipath, complicating the use of the theory. Multipath due to the sound channel can exist at ranges where the random small-scale structures would contribute only small perturbations (no multipath from small structures)  相似文献   

17.
The Herault-Jutten network has been used to separate independent sound sources that have been linearly mixed. The problem of separating a mixture of several independent signals in free-field conditions or a signal and echoes in confined spaces is compounded by propagation time delays between the source(s) and the microphones because the conventional Herault-Jutten network cannot tolerate time delays. In this paper, we combine a symmetrically balanced beamforming array with the conventional Herault-Jutten network. The resulting system can adaptively separate signals that include delays introduced by the propagation medium. The proposed algorithm has been simulated in digital communication multipath channels where intersymbol interference exists. The simulation results show two clear advantages of the proposed method over the conventional adaptive equalization: (1) there is no penalty for very long impulse responses caused by long delays, and (2) no training signals are needed for equalization. The design of a multibeamformer to handle the source separation of multiple broad-band signals is also presented  相似文献   

18.
Recent advances in high-speed underwater acoustic communications   总被引:4,自引:0,他引:4  
In recent years, underwater acoustic (UWA) communications have received much attention as their applications have begun to shift from military toward commercial. Digital communications through UWA channels differ substantially from those in other media, such as radio channels, due to severe signal degradations caused by multipath propagation and high temporal and spatial variability of the channel conditions. The design of underwater acoustic communication systems has until recently relied on the use of noncoherent modulation techniques. However, to achieve high data rates on the severely band-limited UWA channels, bandwidth-efficient modulation techniques must be considered, together with array processing for exploitation of spatial multipath diversity. The new generation of underwater communication systems, employing phase-coherent modulation techniques, has a potential of achieving at least an order of magnitude increase in data throughput. The emerging communication scenario in which the modern underwater acoustic systems mill operate is that of an underwater network consisting of stationary and mobile nodes. Current research focuses on the development of efficient signal processing algorithms, multiuser communications in the presence of interference, and design of efficient modulation and coding schemes. This paper presents a review of recent results and research problems in high-speed underwater acoustic communications, focusing on the bandwidth-efficient phase-coherent methods. Experimental results are included to illustrate the state-of-the-art coherent detection of digital signals transmitted at 30 and 40 kb/s through a rapidly varying one-mile shallow water channel  相似文献   

19.
The problem of source localization in shallow water in the presence of sensor location uncertainty is considered. The Cramer-Rao Bound is used to carry out a feasibility study for the joint source and sensor location problem when the multipath propagation channel is modeled as a known, deterministic waveguide. Unlike the free-space propagation channel, the boundedness of the shallow-water waveguide along its vertical axis provides the key to joint determination of the source and sensor location parameters. It is seen that, when a set of intuitive identifiability conditions are satisfied, numerical examples indicate that, for the scenarios considered, the resulting loss in accuracy with which the source location can be estimated due to sensor location uncertainty may be tolerable  相似文献   

20.
The paper discusses the development of a simulation tool to model high data-rate acoustic communication in shallow water. The simulation tool is able to generate synthetic time series of signals received at a transducer array after transmission across a shallow-water communication channel. The simulation tool is suitable for testing advanced signal processing techniques for message recovery. A channel model has been developed based on the physical aspects of the acoustic channel. Special emphasis has been given to fluctuations of the signal transmission caused by time-varying multipath effects. At shorter ranges, the temporal variations are dominated by acoustic scattering from the moving sea surface. Therefore, the channel model produces a coherence function which may be interpreted as a time-varying reflection coefficient for the surface scattered acoustical path. A static, range-independent ray model identifies the significant multipaths, and the surface path is modulated with the time-varying reflection coefficient. The advantages and limitations of the channel model are discussed and assumptions necessary to overcome the limitations are emphasised. Based on the assumptions, an algorithm has been developed and implemented to model how a binary message will be modulated when transmitted by a transducer, is distorted in the channel and finally is received by a transducer array  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号