首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以舷侧阵作为研究对象,首先介绍了常规波束形成器(CBF)和最佳波束形成器(OBF)的波束输出信号模型,然后推导了信号+噪声场合下的阵增益表达式,比较了在不同信号频率和不同信号源方向角下,CBF和OBF的阵增益,最后在增加了有指向性的CW干扰后,分析了此场合下的阵增益,并比较了不同的信号频率下,干扰源方向角的变化对两类波束形成器阵增益的影响。  相似文献   

2.
For a low-frequency active sonar (LFAS) with a triplet receiver array, it is not clear in advance which signal processing techniques optimize its performance. Here, several advanced beamformers are analyzed theoretically, and the results are compared to experimental data obtained in sea trials. Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides the ability to solve the notorious port-starboard (PS) ambiguity problem of ordinary single-array receivers. More importantly, the PS rejection can be so strong that it allows to unmask targets in the presence of strong coastal reverberation or traffic noise. The theoretical and experimental performance of triplet array beamformers is determined in terms of two performance indicators: array gain and PS rejection. Results are obtained under several typical acoustic environments: sea noise, flow noise, coastal reverberation, and mixtures of these. A new algorithm for (beam space) adaptive triplet beamforming is implemented and tuned. Its results are compared to those of other triplet beamforming techniques (optimum and cardioid beamforming). These beamformers optimize for only one performance indicator, whereas in theory, the adaptive beamformer gives the best overall performance (in any given environment). The different beamformers are applied to data obtained with an LFAS at sea. Analysis shows that adaptive triplet beamforming outperforms conventional beamforming algorithms. Adaptive triplet beamforming provides strong PS rejection, allowing the unmasking of targets in the presence of strong directional reverberation (e.g., from a coast) and at the same time provides positive array gain in most environments.  相似文献   

3.
The problem of tracking the directions-of-arrival (DOAs) of multiple moving sonar targets with an array of passive sensors is complicated by sensor movement. An algorithm for the joint tracking of source DOAs and sensor positions is presented to address this problem. Initial maximum-likelihood estimates of source DOAs and sensor positions are refined by Kalman filtering. Spatio-temporally correlated array movement is considered. Source angle dynamics are used to achieve correct data association. The new technique is capable of performing well for the difficult cases of sources that cross in angle as well as for fully coherent sources. Computer simulations show that the approach is robust in the presence of array motion modeling uncertainty and effectively reduces dependence on expensive and possibly unreliable hardware  相似文献   

4.
Localizing a quiet submerged target in the presence of loud interfering surface ships is an important problem for matched-field processing (MFP) in shallow water. Typically, a data-driven interference suppression scheme is employed which requires neither prior information of the interferer's location nor filter design optimization and iterative estimation. However, the target and the interferers are usually in motion resulting in spreading or mixing of signal energies in their subspaces, thus making it difficult to determine the interference subspace dimension. In this paper, we exploit the difference in modal amplitudes for surface and submerged sources by eigenanalysis of the modal cross-spectral density matrix (CSDM). Simulation and experimental data results show that the interference subspace can be estimated adaptively and the beam output for the target is enhanced.   相似文献   

5.
This paper presents multiple access interference cancellation techniques based on joint implementation of spatial-beamforming and multiuser detection strategies for coherent underwater acoustic communication network. Performances of adaptive multiuser detection strategies based on weighted parallel, successive, and recursive successive interference cancellation techniques are compared using experimental sea-trial data. Results show that the receiver structure adopting weighted recursive successive interference cancellation (RSIC) exhibits robustness in extracting useful data for weak users in the presence of co-channel interference from strong users. In addition, this type of structure simultaneously suppresses the summed interference effects contributed by weaker users toward the strongest user. The RSIC structure is therefore a potential candidate for multiple access interference suppression in coherent shallow water acoustic communication systems  相似文献   

6.
The response of an array of sensors to coherent undesired noise interfering with the measurement of a desired signal can be optimized if special filters are applied to the outputs of the sensors. In this paper, we derive analytic expressions for filters which minimize the power spectrum of the array response to the undesired coherent signal while simultaneously providing an all-pass condition for the desired signal. These filters are shown to yield an array rejection response which has zero-width main lobes and no sidelobes. An example illustrating the results is also presented.  相似文献   

7.
The detection of a passive sonar target in the presence of ambient noise and a plane wave interference is discussed. Intuitively, such a detector consists of a spatial filter which nulls the interference, followed by a temporal filter. In this paper we study the role of the a priori knowledge of the spectrum of the interference and/or signal in improving detector performance. We develop three different generalized likelihood ratio test (GLRT) detectors, resulting from different cases of prior spectral information. We show that, for all cases of known/unknown source and/or interference power spectrum, the GLRT detectors are, as expected, null steering systems. The depth and shape of the null, as well as the postbeamforming temporal filter, are different and are functions of the a priori known spectrum. Under the assumption that all signals and noise are zero-mean Gaussian processes, we analyze the performance of the different detectors and we exploit their dependency on the array beampattern, as well as on the source and interference signal-to-noise ratio. This analysis serves to identify scenarios where the use of prior spectral information leads to significant performance improvement  相似文献   

8.
Based on the general concept of the inverse acoustic radiation problem, the temporal scanning of a stationary acoustic field along a closed contour is used to simplify the measurement approach for obtaining information on source directionality. The mathematical formulation is derived from a model of the two-dimensional acoustic field. The formulation of the inverse problem is also investigated to establish a methodology for improving the angular resolution of the array processing. The fundamental relationship between the sound sources and the circular passive synthetic array is explored, utilizing existing mathematical methods, in order to develop the processing algorithm. Other subjects of practical interest, such as directional ambiguity, effect of Doppler frequency, interference noise, and processing gain are discussed. It is concluded that the results can be used to establish guidelines for engineering design and deployment of this type of synthetic array, and to further exploit the new array signal processing technique  相似文献   

9.
针对影响拖曳线列阵声纳系统目标检测性能的两种典型近场强干扰源,由宽带近场阵列模型,提出了基于功率谱相关的干扰抵消方法,通过比较基元域频域信号与干扰波束信号功率谱之间的相似关系,找到与每路基元信号相匹配的干扰分量信号,最后通过频域块自适应滤波算法实现每路基元域信号中的干扰抵消。宽带仿真结果与海试表明,这种方法在强干噪比和低信噪比条件下,比最小方差无失真响应和传统基元域干扰抵消方法在阵增益方面提高约10dB。相比传统基元域干扰抵消方法,这种方法能够实现抵消拖船干扰的同时抵消邻近目标强干扰。  相似文献   

10.
A multi-element receiver strategy is proposed in this paper for a multi-user shallow-water acoustic network (SWAN). The base station receiver, equipped with prior knowledge of the synchronization and training sequences of all intended users, has the task of demodulating the received signals of each user independent of the presence of other users. The adopted receiver strategy enables robust communications through the challenging underwater environment which is limited by both environmental and system factors. The channel is characterized by inter-symbol interference due to multipath propagation and multiple access interference. In this paper, we propose a number of multi-user detection receiver structures employing adaptive decision feedback equalization and spatial diversity to mitigate the effect of these two types of interference. Computer simulations and experimental sea trials conducted in the North Sea in 1999 were used to test the receiver strategies' performance for a two user near far scenario. Amongst a number of strategies tested, the structure based on recursive successive interference cancellation demonstrated improved performance overall  相似文献   

11.
A unified treatment for performance evaluation of various array signal processors is presented. Detection performance is expressed in terms of the parameter of the power-type receiver operating characteristic (ROC) for optimum, beamformer, and null-steerer detectors. Estimation performance is analyzed in terms of the normalized mean-square error (MSE) for minimum mean-square error (MMSE) and maximum likelihood estimators (MLE's) under a varying noise environment. Sensitivity of the detection/estimation performance to the varying internal and directional noise sources is investigated. An interesting inverse relationship is presented between the normalized MSE of the MMSE estimator and the power-type ROC parameter for the optimum detector.  相似文献   

12.
Various approaches to the beamforming of data from large aperture vertical line arrays are investigated. Attention is focused on the conventional beamforming problem where the angular power spectrum is estimated, in this case by the adaptive minimum variance processor. The data to be processed are 200 Hz CW transmissions collected at sea by a 900 m vertical line array with 120 equally spaced sensors. Correlated multipath arrivals result in signal cancellation for the adaptive processor, and spatial smoothing techniques must be used prior to beamforming. The processing of subapertures is proposed. Full aperture and subaperture processing techniques are used on the 200 Hz data. Multipath arrivals are found to illuminate only parts of the array, thus indicating that the wavefield can be highly inhomogeneous with depth  相似文献   

13.
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration.  相似文献   

14.
The Herault-Jutten network has been used to separate independent sound sources that have been linearly mixed. The problem of separating a mixture of several independent signals in free-field conditions or a signal and echoes in confined spaces is compounded by propagation time delays between the source(s) and the microphones because the conventional Herault-Jutten network cannot tolerate time delays. In this paper, we combine a symmetrically balanced beamforming array with the conventional Herault-Jutten network. The resulting system can adaptively separate signals that include delays introduced by the propagation medium. The proposed algorithm has been simulated in digital communication multipath channels where intersymbol interference exists. The simulation results show two clear advantages of the proposed method over the conventional adaptive equalization: (1) there is no penalty for very long impulse responses caused by long delays, and (2) no training signals are needed for equalization. The design of a multibeamformer to handle the source separation of multiple broad-band signals is also presented  相似文献   

15.
Han  Xiao  Yin  Jing-wei  Liu  Bing  Guo  Long-xiang 《中国海洋工程》2019,33(2):237-244
Although multiple-input multiple-output(MIMO) underwater acoustic(UWA) communication has been intensively investigated in the past years, existing works mainly focus on open-water environment. There is no work reporting MIMO acoustic communication in under-ice environment. This paper presents results from a recent MIMO acoustic communication experiment which was conducted in Bohai Gulf during winter. In this experiment, high frequency MIMO signals centered at 10 kHz were transmitted from a two-element source array to a four-element vertical receiving array at 1 km range. According to the received signal of different array elements, MIMO acoustic communication in under-ice environment suffers less effect from co-channel interference compared with that in open-water environment. In this paper, time reversal followed by a single channel decision feedback equalizer is used to process the experimental data. It is demonstrated that this simple receiver is capable of realizing robust performance using fewer hydrophones(i.e. 2) without the explicit use of complex co-channel interference cancelation algorithms, such as parallel interference cancelation or serial interference cancelation.  相似文献   

16.
Reverberation rejection with a dual-line towed array   总被引:1,自引:0,他引:1  
Low-frequency bottom reverberation from explosive sources was measured with a dual-line horizontal towed array during a 1991 system engineering trial. The receiver's parallel line arrays were processed coherently in order to unambiguously resolve the reverberation field in azimuth. Initial beamforming that assumed a straight-and-parallel array configuration led to poor or erroneous ambiguity resolution, suggesting the system was deformed significantly from the assumed shape. In the absence of reliable shape measurement data, the array shape was deduced acoustically using tow ship signals and the direct blast of an explosive source. The estimated shape was then used in a shape-compensated beamformer to produce azimuthally unambiguous estimates of the reverberation field. Backlobe rejection of more than 20 dB was attained for both direct blast and distant reverberation energy  相似文献   

17.
Acoustic signal parameter estimation is important for diverse marine geodesy surveys and several other applications. However, the received signal from a far-field target characterized by planar wavefront propagation is frequently affected by strong nearby interfering signals. Their presence deteriorates the performance of direction-of-arrival (DOA) estimation for far-field target. In order to enhance the reception of signal from far-field target, the near-field/far-field (NFFF) beamformer is proposed. Such a beamformer optimizes beam pattern for far-field detection by maximizing beamformer output in the direction of the far-field target with the imposed condition to eliminate interfering signals generated in near-field locations. As the interference suppression only occurs at the position of near-field interference, a possible blind zone for far-field detection in conventional methods is not created. The NFFF beamformer is applicable for coherent signals and the scenario with multi interferences. For stationary situation where interferers locations are fixed, the NFFF beamformer computations do not require time updates with associated computational load. Furthermore the proposed method can be extended to several new situations such as acoustic monitoring performed from a stationary platform subjected to water currents, waves, winds and other variables, all of them generating nearby interferences and also to different array configurations including 2D and 3D arrays.  相似文献   

18.
A portable system for the measurement of certain underwater acoustic propagation phenomena is described. Acoustic sources and receivers of special design are used. A precision tracking system enables coherent signal reception in the presence of source-receiver motion. The major elements of the acoustic range are described and examples of data are presented.  相似文献   

19.
Measurements in the Levantine Sea with a seismic-type array [i.e., the high-frequency array (27 wavelengths at 348 Hz), the mid-frequency array (27 wavelengths at 175 Hz), and the low-frequency array (21 wavelengths at 58 Hz)] were found to have on average results within 1 dB of the theoretical signal gain. Observed signal gain degradations for peak-tracked and short integration times (1 min) had standard deviations from 2 to 3 dB and were caused by the combination of coherent multipaths, array shape, and array motion. The relative motion of source and receiver (5-8 kn) was an important cause of the average degradation at longer integration times (5 min). Equivalent plane wave beam noise levels were measured as a function of frequency, time, bearing, and aperture length. The beam noise level results show contributions from distant surface-ship-generated noise and natural environmental background noise. These results showed resolved distant shipping with median beam noise levels consistent with array noise gain 1-2 dB greater than the theoretical value for incoherent isotropic noise. The beam noise cumulative probability distribution function versus equivalent plane wave levels differed significantly from log-normality. Beam noise surfaces (beam noise levels versus time and bearing) show a higher density of ships for the high-frequency array when compared to the low-frequency array. Beam-to-beam cross correlations were found be sharply peaked and beam autocorrelation functions versus time showed zero crossing times on the order of 9-10 min. Significant space-time noise fade durations were observed at lower frequencies  相似文献   

20.
We report on the testing of a single-beam 1.7-MHz coherent Doppler sonar. The system is PC-controlled, using a digital signal processor (DSP) to acquire and extract the velocity and backscatter amplitude data. Results from a series of tow-tank calibration tests demonstrate an accuracy in the order of 5 mm s-1 for data rates of 10 profiles/second over a 1-2 m range with 1.5-cm range bins. An expression for system accuracy is developed which allows generalization to other pulse-to-pulse coherent Doppler systems. We present data showing the systematic decorrelation of backscatter signals due to particle advection: increased decorrelation is seen in the transducer near-field. Example observations of velocity profiles in laboratory-generated waves are presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号