首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthquake-induced hazards are profoundly affected by site effects related to the amplification of ground motions, which are strongly influenced by local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated geographic information system (GIS)-based system for geotechnical data, called the geotechnical information system (GTIS), was developed to establish a regional counterplan against earthquake ground motions in the Seoul metropolitan area. In particular, to reliably predict spatial geotechnical information, a procedural methodology for building the GTIS within a GIS framework was developed and applied to the Seoul area in Korea. To build the GTIS, pre-existing geotechnical data were collected in and around the study area, and then a walk-over site survey was conducted to acquire surface geo-knowledge data. In addition, the representative shear wave velocities for geotechnical layers were derived by statistically analyzing many seismic test data in Korea. The GTIS was used in a practical application to estimate site effects in the study area; seismic zoning maps of geotechnical earthquake parameters, such as the depth to bedrock and the site period, were created and presented as a regional synthetic strategy for earthquake risk assessment. Furthermore, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site and administrative sub-unit in the study area. The methodology and results of the case study of seismic zonations in the Seoul area verified that the GIS-based GTIS can be very useful for the regional estimation of seismic risk and also to support decisions regarding seismic hazard mitigation, particularly in the metropolitan area.  相似文献   

2.
This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.  相似文献   

3.
A methodology for seismic microzonation and earthquake damage scenarios may be considered as composed of two stages. In the first stage, microzonation maps with respect to estimated earthquake characteristics on the ground surface are generated for an investigated urban area. The effects of local geological and geotechnical site conditions are taken into account based on site characterization with respect to representative soil profiles extending down to the engineering bedrock. 1D site response analyses are performed to calculate earthquake characteristics on the ground surface using as many as possible, hazard compatible real acceleration time histories. In the second stage, vulnerability of buildings and pipeline systems are estimated based on site-specific ground motion parameters. A pilot study is carried out to evaluate seismic damage in a district in Istanbul, Turkey. The results demonstrate the significance of site characterization and site response analysis in calculating the earthquake characteristics on the ground surface in comparison to simplified empirical procedures.  相似文献   

4.
Geotechnical site conditions that can be very different due to changes in thickness and properties of soil layers, depth of bedrock and water table are among the main factors controlling earthquake characteristics on the ground surface. Soil layers subjected to cyclic stresses may lead to degradation of stress–strain and shear strength properties. The laboratory tests were conducted to evaluate the changes in the stress–strain and shear strength characteristics in terms of threshold cyclic shear stresses and cyclic yield stress. The effects of local site conditions are assessed based on geotechnical site conditions and earthquake source characteristics.  相似文献   

5.
Safety against earthquake hazards presents two aspects: structural safety against potentially destructive dynamic forces and site safety related to geotechnical phenomena, such as amplification, landsliding and soil liquefaction. The correct evaluation of seismic hazard is, therefore, highly affected by risk factors due to geological nature and geotechnical properties of soils. In response to these new developments, several attempts have been made to identify and appraise geotechnical hazards and to represent them in the form of zoning maps, in which locations or zones with different levels of hazard potential are identified. The geotechnical zonation of the subsoil of the city of Catania (Italy) suggests a high vulnerability of the physical environment added to site amplification of the ground motion phenomena. The ground response analysis at the surface, in terms of time history and response spectra, has been obtained by some 1D equivalent linear models and by a 2D linear model, using a design scenario earthquake as input at the conventional bedrock. In particular, the study has regarded the evaluation of site effects in correspondence of the database of about 1200 boreholes and water-wells available in the data-bank of the Catania area. According to the response spectra obtained through the application of the 1D and 2D models, the city of Catania has been divided into some zones with different peak ground acceleration at the surface, to which corresponds a different value of the Seismic Geotechnical Hazard. A seismic microzoning map of the urban area of the city of Catania has been obtained. The map represents an important tool for the seismic improvement of the buildings, indispensable for the mitigation of the seismic risk.  相似文献   

6.
采用等效线性动粘弹性模型描述土的动力非线性特性,基于一维等效线性波传法,对泉州盆地地震效应进行了分析;同时,采用修正Martin-Seed-Davidenkov动粘弹塑性模型描述土的动力非线性特性,对泉州盆地非线性地震效应进行了大尺度二维精细化有限元分析,研究了地形地貌和土层横向不均匀性对地震效应的影响。将两种分析结果进行对比,结果表明:①随着基岩输入地震动强度增大,地表峰值加速度PGA放大效应总体呈现减小趋势,中震与小震、大震与小震的地表PGA放大系数之比依次为0.83~0.99、0.72~0.97;②该盆地Ⅲ类场地处,基岩、地表起伏不大,且土层横向分布较均匀,两种方法计算得到的地震效应特征类似;基岩或地表起伏剧烈、土层横向分布明显不均匀的Ⅱ类场地上,二维非线性分析给出的地表PGA放大系数明显大于一维等效线性结果,两种方法得到的地表加速度反应谱及PGA随土层深度的变化特征存在显著差异,二维非线性分析给出的地表加速度反应谱大多呈现双峰甚至多峰现象,且PGA在土层特定深度处存在聚集效应,使PGA随土层深度的变化呈现非单调性。  相似文献   

7.
Seismic site amplification studies are generally used to assess the effects of local geology and soil conditions on ground motion characteristics. Although extensive reviews on site amplification phenomena associated with stratigraphic effects can be found in the specialized literature, it should be pointed out that most of the practical applications have been limited to the study of vertically propagating shear horizontal (SH) waves, i.e., to the 1-D soil amplification problem. Furthermore, little attention, if any, has been devoted to the study of the effects of non-vertically incident SH waves on surface accelerograms and on the earthquake response of structures. In the present work, the study is extended to an investigation of 2-D site amplification of non-vertically propagating seismic shear waves in multilayered viscoelastic soil deposits. Sensitivity analyses of the effects of non-vertical incidence on site amplification functions are performed based on site geotechnical data collected from post-seismic investigations of the 1980 El-Asnam earthquake. Analytical results are discussed in terms of seismic site transfer functions, spectral ratios, surface acceleration time histories, and structural response spectra for different values of wave incidence angle. Both bedrock and rock outcropping cases are examined.  相似文献   

8.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

9.
A realistic definition of seismic input for the Catania area is obtained using advanced modeling techniques that allow us the computation of synthetic seismograms, containing body and surface waves. With the modal summation technique, extended to laterally heterogeneous anelastic structural models, we create a database of synthetic signals which can be used for the study of the local response in a set of selected sites located within the Catania area. We propose a ground shaking scenario corresponding to a source spectrum of an earthquake that mimics the destructive event that occurred on 11 January 1693. Making use of the simplified geotechnical map for the Catania area, we produce maps which illustrate the spatial variability of the SH waveforms over the entire area. Using the detailed geological and geotechnical information along a selected cross section, we study the site response to the SH and P-SV motion in a very realistic case, adopting and comparing different estimation techniques.  相似文献   

10.
局部场地条件对地震动特性影响显著,深厚的软弱覆盖层引起的地震动场地效应会显著放大中长周期反应谱。采用谱比法,对2020年7月12日唐山古冶5.1级地震中获得的部分强震动记录进行统计,发现在本次地震中北京城区的地震动场地效应显著,深厚覆盖层明显放大了加速度反应谱,在T=1.2 s左右反应谱放大倍数可达4.0,说明北京地区的场地和盆地效应使得远场地震动的中长周期成分显著放大。此外,发现参考基岩场地记录是否与土层场地处遭受的基岩地震动一致,仍然是制约统计结果可靠性的关键因素。   相似文献   

11.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

12.
震害资料显示,场地条件对地震动特性以及工程结构破坏程度影响显著。为减少因场地效应而造成的经济损失和社会影响,在进行场地地震反应分析时,需最大限度地减小因场地土层模型参数的不确定性引起的地震动评估偏差,为工程结构地震反应分析选取并生成适当的地震动输入。随着强震动观测技术的逐渐发展,大量可靠的钻井台阵记录为地震过程中场地观测点的动力反应提供了直接数据。以美国加州地区La Cienega钻井台阵强震动观测数据为基础,利用互相关函数,对不同强度地震作用下场地土层的平均剪切波速进行分析,并在此基础上,以Cyclic 1D为模拟平台,建立一维自由场地地震反应有限元分析模型。分析结果表明:通过钻井台阵地震动观测数据识别,得到场地平均剪切波速,能够反映该场地的动力特性,数值模拟计算结果和台阵地震动记录基本吻合,可为数值模型参数选取提供依据。  相似文献   

13.
The 1897 Great Shillong earthquake revealed considerable seismic susceptibility in Guwahati City, such as soil liquefaction, landslides, and surface fissures. In an attempt to quantify the seismic vulnerability of the city based on geological, seismological, and geotechnical aspects concerning seismic site characterization, in-depth analysis was performed using a microtremor survey with recordings of five small to moderate magnitude (4.8 ≤ mb ≤ 5.4) earthquakes that occurred in 2006 and geotechnical investigations using the Standard Penetration Test (SPT). Additionally, the basement topography was established using vertical electrical resistivity sounding and selected drill-hole information. Region-specific relationships are derived by correlating the estimated values of predominant frequency, shear-wave velocity, and basement depth indicating conformity with the predominant frequency distribution and the basin topography underlain by a hard granitic basement. Most parts of the city adhere to the predominant frequency range of 0.5–3.5 Hz, setting aside areas of deep sediment fills or hilly tracts, suggesting that the existing moderate-rise RC buildings in the territory are seismically vulnerable. Furthermore, the geotechnical assessment of the soil liquefaction potential reveals widespread susceptibility across the terrain. Eventually, a site classification map of the city is prepared following the National Earthquake Hazard Program (NEHRP) provision. The average site amplification factor from geotechnical modeling for site class D is about 3 in the frequency range of 2–4 Hz. In addition, earthquake data yield an average site amplification factor of 4–6 in the frequency range of 1.2–5.0 Hz at the seismic stations located in site class E and F. High site amplifications of around 5.5 and 7.5 at 2 Hz, respectively, are observed at AMTRON and IRRIG seismic stations, which are located in the proximity of Precambrian rocks, indicating probable basin edge effects—scattering and diffraction of incident energy. Interplay of dispersed valleys surrounded by small hillocks in the study region is likely to induce micro-basin effects where the sediment thickness/depth vis-à-vis predominant frequency and basin geometry in conjunction play pivotal roles in the augmentation of site response.  相似文献   

14.
The understanding of geotechnical characteristics of near-surface material is of fundamental interest in seismic microzonation. Shear wave velocity (Vs), one of the most important soil properties for soil response modeling, has been evaluated through seismic profiling using the multichannel analysis of surface waves in the city of Dehradun situated along the foothills of northwest Himalaya. Fifty sites in the city have been investigated with survey lines between 72 and 96 m in length. Multiple 1-D and interpolated 2-D profiles have been generated up to a depth of 30–40 m. The Vs were used in the SHAKE2000 software in combination with seismic input motion of the recent Chamoli earthquake to obtain site response and amplification spectra. The estimated Vs are higher in the northern part of the study area (i.e., 200–700 m/s from the surface to a depth of about 30 m) as compared to the south and southwestern parts of the city (i.e., 180–400 m/s for the same depth range). The response spectra suggest that spectral acceleration values for two-story structures are three to eight times higher than peak ground acceleration at bedrock. The analysis also suggests peak amplification at 3–4, 2–2.5, and 1–1.5 Hz in the northern, central, and south-southwestern parts of the city, respectively. The spatial distributions of Vs and spectral accelerations provide valuable information for the seismic microzonation in different parts of the urban area of Dehradun.  相似文献   

15.
选取了50条实际地震动,采用一维场地等效线性化方法分别对均匀半空间场地和成层半空间场地进行地震响应分析,同时选择效益性作为判别标准来探究最优地震动峰值指标(峰值加速度PGA,峰值速度PGV,峰值位移PGD)随埋深变化的规律.研究结果表明:对于选取的两类场地,最优地震动峰值指标均随埋深的改变而变化,埋深浅时PGA效益性最...  相似文献   

16.
—?The problem of accounting for local soil effect on earthquake ground motion is especially urgent when assessing seismic hazard – recent needs of earthquake engineering require local site effects to be included into hazard maps. However, most recent works do not consider the variety of soil conditions or are performed for generalized site categories, such as “hard rock,”“soft soil” or “alluvium.” A technique of seismic hazard calculations on the basis of the Fourier Amplitude Spectra recently developed by the authors allows us to create hazard maps involving the influence of local soil conditions using soil/bedrock spectral ratios. Probabilistic microzoning maps may be constructed showing macroseismic intensity, peak ground acceleration, response and design spectra for various return periods (probability of exceedance), that allow optimization of engineering decisions. An application of this approach is presented which focused on the probabilistic microzoning of the Tashkent City.  相似文献   

17.
Preloading is a temporary loading, usually an embankment, applied to improve subsurface soils by densification. This paper studies the effect of preloading on the amplification characteristics of soft sites with an elaborate parametric analysis. The soil type, the depth of the bedrock, the water table depth, the level of preloading, the applied earthquake, the shear wave velocity of the bedrock and the shear modulus and damping versus shear strain relations were varied in a systematic manner. The analysis was performed by the commonly used one-dimensional equivalent-linear dynamic method. The shear wave velocity versus depth and the effect of preloading on shear velocity are computed with well-established soil mechanics equations. The results illustrated that the seismic response at the top of the profile generally decreases as a result of preloading. A more detailed analysis of results shows that the effect of preloading on the seismic response depends on the soil type and the depth of the bedrock. Based on these results, a method is proposed by which a practicing engineer involved with improvement of soft ground can simulate the effect of preloading on the seismic motion.  相似文献   

18.
彭亮  吴彬  沈军  唐丽华  陈建波 《内陆地震》2008,22(3):234-242
利用地震危险性概率分析方法对大(Ⅰ)型一等工程-某大型水利枢纽工程所在的场址进行地震危险性分析;该拟建工程场址所在的西昆仑地震带是新疆境内地震活动强度最高、频度最大的地震带,拟建工程坝高库大,为了进行准确的地震危险性分析研究。本研究根据区域地震活动性及地震构造研究成果,确定了地震活动性参数,按照构造类比、历史地震重演原则划分了潜在震源区;在分析了区域地震活动环境和地震构造等因素后,综合评价其对场地地震危险性的影响;根据确定的地震动衰减关系及地震带、潜在震源区的地震活动性参数,应用概率方法计算得出了场地不同概率水平的水平向基岩峰值加速度。其结果做为适合该水库的工程场地地震危险性分析结论,用于指导工程选址、设计、抗震设防。  相似文献   

19.
—?Modern seismic codes usually include provisions for site effects by considering different coefficients chosen on the basis of soil properties at the surface and an estimate of the depth of bedrock. However, complex local geology may generate site amplification on soft soils significantly larger than what would be expected if we assume that the subsoil consists of plane soil layers overlaying a homogeneous half-space. This paper takes advantage of the large number of previous studies of site effects done at Euroseistest (northern Greece). Those studies have supplied a very detailed knowledge of the geometry and properties of the materials filling this shallow valley. In this paper we discuss the differences between site effects evaluated at the surface using simple 1-D computations and those evaluated using a very detailed 2-D model of the subsoil structure. The 2-D model produces an additional amplification in response spectra that cannot be accounted for without reference to the lateral heterogeneity of the valley structure. Our numerical results are extensively compared with observations, which show that the additional amplification computed from the 2-D model is real and affects by a significant factor response spectra, and thus suggests that some kind of aggravation factor due to the complexity of local geology is worthy of consideration in microzonation studies and seismic codes.  相似文献   

20.
地震动作为引起地震灾害的原动力,常常通过造成建筑物倒塌、山体滑坡等形式引起大量人员伤亡和财产损失。1920年海原8½级地震,在震中距80 km远的西吉—静宁交界的黄土丘陵区引发了大量的山体滑坡,并造成重大人员伤亡和财产损失。在分析海原地震高烈度区滑坡分布特征的基础上,通过场地调查和数值计算等方法,研究典型滑坡密集场地的地质条件及地震反应特征。研究表明起伏地形和黄土厚度不均等因素造成丘陵山体两侧地震反应的差异,从而导致地震滑坡在斜坡土体较厚的一侧成群连片发育。海原地震造成的滑坡密集区的地形地貌、岩土性质、土层结构等条件决定了该地区地震动随局部场地条件变化非常迅速,地层场地效应和地形场地效应联合作用加剧了斜坡地表的地震动放大作用,增加了触发地震滑坡的动力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号