首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variations in physical-chemical factors, species composition, abundance and biomass of nano- and micro-phytoplankton assemblages, as well as their responses to environmental factors, were investigated over a complete cycle (6 months) in a semi-enclosed shrimp-farming pond near Qingdao, northern China. The aim was to establish the temporal patterns of phytoplankton communities and to evaluate protists as suitable bioindicators to water quality in mariculture systems. A total of 34 taxa with nine dominant species were identified, belonging to six taxonomic groups (dinoflagellates, diatoms, cryptophyceans, chlorophyceans, euglenophyceans and chrysophyceans). A single peak of protist abundance occurred in October, mainly due to chlorophyceans, diatoms and chrysophyceans. Two biomass peaks in July and October were primarily due to dinoflagellates and diatoms. Temporal patterns of the phytoplankton communities significantly correlated with the changes in nutrients, temperature and pH, especially phosphate, either alone or in combination with NO3-N and NH3-N. Species diversity, evenness and richness indices were clearly correlated with water temperature and/or salinity, whereas the biomass/abundance ratio showed a significant correlation with NO3-N. The results suggest that phytoplankton are potentially useful bioindicators to water quality in semi-enclosed mariculture systems.  相似文献   

2.
To better understand the spatial-temporal variation in phytoplankton community structure and its controlling factors in Jiaozhou Bay,Qingdao,North China,four seasonal sampling were carried out in 2017.The phytoplankton community structure and various environmental parameters were examined.The phytoplankton community in the bay was composed of mainly diatoms and dinoflagellates,and several other species of Chrysophyta were also observed.Diatoms were the most dominant phytoplankton group throughout the year,except in spring and winter,when Noctiluca scintillans was co-dominant.High Si/N ratios in summer and fall reflect the high dominance of diatoms in the two seasons.Temporally,the phytoplankton cell abundance peaked in summer,due mainly to the high temperatures and nutrient concentrations in summer.Spatially,the phytoplankton cell abundance was higher in the northern part of the bay than in the other parts of the bay in four seasons.The diatom cell abundances show significant positive correlations with the nutrient concentrations,while the dinoflagellate cell abundances show no correlation or a negative correlation with the nutrient concentrations but a significant positive correlation with the stratification index.This discrepancy was mainly due to the different survival strategies between diatoms and dinoflagellates.The Shannon-Wiener diversity index(H')values in the bay ranged from 0.08 to 4.18,which fell in the range reported in historical studies.The distribution pattern of H' values was quite different from that of chlorophyll a,indicating that the phytoplankton community structure might have high biomass with a low diversity index.Compared with historical studies,we believe that the dominant phytoplankton species have been changed in recent years due mainly to the changing environment in the Jiaozhou Bay in recent 30 years.  相似文献   

3.
Poyang Lake is the largest freshwater lake in China, and it has a seasonal flooding cycle that significantly changes the water level every year. The aim of this paper was to explain how these hydrological changes influence diatom populations in Poyang Lake. The yearly hydrological cycle can be divided into 4 phases: low water-level phase, increasing water-level phase, high water-level phase and decreasing water-level phase. Variations in the abundance of planktonic diatoms were studied using quarterly monitoring data collected from January 2009 to October 2013. Generally, diatoms were dominant in Poyang Lake and accounted for more than 50% of the total phytoplankton biomass except in July 2009 (26%) and January 2012 (35%). Aulacoseira granulata and Surirella robusta were the predominant species in all four phases, and they accounted for 25.02% to 56.89% and 5.07% to 14.78% of the total phytoplankton biomass, respectively. A redundancy analysis (RDA) showed that changes in physico-chemical parameter were related to the water level, and changes in diatom biomass were related to nitrite levels and pH. These results indicate that changes in environmental parameters related to both seasonal variations and water-level fluctuations caused variations in diatom biomass and community composition in Poyang Lake. Furthermore, extreme hydrological events can have different influences on the diatom community composition in the main channel and lentic regions. This research provides data on the diatom variations in Poyang Lake and will be useful for establishing biological indicators of environmental change and protecting Poyang Lake in the future.  相似文献   

4.
The aim of this study was to determine the phytoplankton community structures of reservoirs of different trophic status, located in a cold region. Physical and chemical variables and the phytoplankton communities were investigated in two reservoirs (Xiquanyan Reservoir and Taoshan Reservoir) in Northeast China in 2009. The two reservoirs showed strong seasonal fluctuations in their physical and chemical composition. Results of the trophic status index indicated that Xiaquanyan Reservoir was mesotrophic, whilst Taoshan Reservoir was eutrophic. Diatoms were the dominant phytoplankton group in Xiquanyan Reservoir throughout all seasons of the study, while in Taoshan Reservoir, diatoms dominated in spring, and cyanobacteria dominated in summer and autumn. This difference was resulted from differences in local environmental factors, including nutrients and hydrology. This study suggests that in mesotrophic reservoirs, nutrients played a key role in controlling seasonal phytoplankton successions, whereas in eutrophic reservoirs water temperature was the key factor in a cold region. Notably, the dominant species in summer in the Taoshan Reservoir was Microcystis, which may produce toxins depending on the ambient conditions, and presenting a risk of local toxin contamination.  相似文献   

5.
In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang(Yangtze) River estuary and its adjacent waters, the diatom fossils from 34 surface sediment samples and their relationship with environmental variables were analyzed by principal component analysis and redundancy correspondence analysis. The diversity and abundance of diatom fossils were analyzed. Some annual average parameters of the overlying water(salinity, temperature, turbidity, dissolved oxygen, depth, dissolved inorganic nitrogen,dissolved inorganic phosphate and dissolved inorganic silicate) were measured at each sampling site. A total of 113 diatom taxa and one silicoflagellate species were identified in the investigation area. Diatom fossils were better preserved in fine sediments. The absolute abundance of diatom fossils did not significantly dif fer between inshore and of fshore areas, the species diversity decreased from inshore to of fshore. This may be because high nutrients and low salinity promoted the growth of more brackish species in coastal waters. The diatom taxa were divided into three groups, on the basis of their response and indication to environmental changes. For example, Actinocyclus ehrenbergii and Cyclotella stylorum were dominant in coastal waters(Group 1 and Group 3) with high nutrients and low salinity; the relative abundances of Paralia sulcata and Podosira stelliger were significantly higher in of fshore sites(Group 2, average 39.5%),which were characterized by high salinity and deep water. Four environmental variables(salinity, dissolved inorganic nitrogen, temperature and water depth) explained the composition and distribution of diatom taxa independently( P 0.05), this finding can be applied in further paleoenvironmental reconstruction research in this area.  相似文献   

6.
Wetlands play a very important role in ecosystems. Qixinghe Wetland is a nature reserve area in northeastern China. In this paper, diatom communities and environmental qualities were investigated at eight sites in Qixinghe Wetland. This study was to examine diatom species patterns in relation to environmental variables in wetlands, and to use diatoms as indicators to water quality in wetlands and wetland classification. Diatoms were sampled in summers and autumns in 2002 and 2004, during which 180 taxa were identified. Environmental variations in pH, temperature, biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were measured. The seasonal composition and abundance of diatoms changed greatly during the study period. The relationship between diatoms and chemical water quality was estimated statistically. Canonical correspondence analysis (CCA) with forward selection and Monte Carlo permutation tests revealed that all water environmental variables changed during the study period (P<0.05). Among all the parameters, variation in BOD among the sites was a very important determinant of species composition according to the CCA, and BOD decreased from 2002 to 2004. Our results suggest that the water quality had improved during the three-year period because of enhanced environmental protection with less human disturbance. We conclude that diatoms can be used to indicate water quality and habitat conditions in this wetland.  相似文献   

7.
Fouling diatoms are a main component of biofilm,and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater,on the Yantai coast,northern Yellow Sea,China,using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3,7,14,and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca,Nitzschia,Navicula,Amphora,Gomphonema,and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions,we found that Cylindrotheca grew very fast,which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18 S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.  相似文献   

8.
Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

9.
The spatial distribution of siliceous microfossils (diatoms and silicoflagellates) in the surface sediments was mapped at 113 sites in the Yellow Sea and sea areas adjacent to the Changjiang (Yangtze) River, China. In total, 267 diatom taxa and two silicoflagellate species were identified from the sediments. The spatial variations in abundance and diversity were classified into three distinct geographic patterns using Q mode clustering: a south-north geographic pattern, a coastal-offshore pattern and a unique pattern in the Changjiang River mouth. The south-north geographic pattern was related to the spatial variations in sea temperature. Coscinodiscus oculatus, a warm-water species, indicated these variations by a gradual decrease in abundance from the south to the north. The coastal-offshore pattern was in response to the spatial variations in salinity. Cyclotella stylorum, Actinocyclus ehrenbergii and Dictyocha messanensis, the dominant brackish species in coastal waters, significantly decreased at the isobaths of approximately 30 m, where the salinity was higher than 31. Paralia sulcata and Podosira stelliger indicated the impact of the Yellow Sea Warm Current in the central Yellow Sea. The unique pattern in the Changjiang River mouth showed the highest species diversity but lower abundance, apparently because: freshwater input can significantly increase the proportion of brackish species; nutrients can supply the growth of phytoplankton; and high sedimentation rates can dilute the microfossil abundance in the sediments. Our results show that an integration of environmental factors (e.g., nutrient levels, sedimentation rate, sea temperature, salinity and water depth) determined the spatial characteristics of the siliceous microfossils in the surface sediments.  相似文献   

10.
Diatoms are widely used to study past and present changes in the marine environment. Unimodal models are appropriate for exploring the relationship between environmental properties in Chinese inshore waters and fossil diatom species derived from modem surface sediments. The best-fit relationships between two multivariate datasets (diatom species and environmental variables) were identified using canonical correspondence analysis (CCA), which is a constrained ordination technique. The absolute abundance of diatoms in the Chinese inshore waters ranged from 500 to 48 000 valves/g, and the average absolute abundance of all the 29 sites was l l 300 valves/g. 153 species and varieties of diatoms belonging to 42 genera in all were identified in the Chinese inshore waters. There were 28 dominant diatom species in all. According to the absolute abundance of the dominant species and the spatial distribution of the currents from the Chinese inshore waters, 12 diatom assemblages were distinguished from north to south, which reflected the different oceanographic conditions at the regional scale. Of the eight environmental variables considered, the most important environmental variable is winter sea surface salinity (WSS), which was also the only environmental variable with statistical significance. Therefore, it may be used to establish a transfer functions for the Chinese inshore waters in future paleoclimate studies.  相似文献   

11.
The species composition, horizontal distribution and seasonal succession of the phyto-plankton at five sampling stations in the channel between Dongting Lake and the Changjiang River, China were studied from May 1995 to December 1997. A total of 416 taxa were observed; diatoms comprised the most diverse taxonomic group representing 58.2 % of the total species. The β-mezotrophic indicators were 92 taxa or 22 % of the total, the a-mezotrophic or α, β-eutrophic indicators decreased distinctly to 20 taxa or 4.8 % of the total. The species number and composition of various phyla were approximately similar at Stations 1, 2, 3 and 4, but at Station 5 the number of species was the minimum and the ratio of diatoms to total phytoplankton in the number of species was the highest. In seasonal succession of the phytoplank-ton species, the number was the highest in May and June, lower in December, January, March and July in the channel. The dominant species were different in different months. The ratio of diatoms species number to blue green algae and green algae species number diminished gradually from winter to summer and autumn, and then increased gradually from autumn to winter and early spring in the annual cycle. Margalef, Simpson and Shannon—Weaver diversity indices changed in different months, their values were higher in winter, lower in summer. Nygaard‘s diatoms quotients were lower in winter, then in spring and autumn, higher in summer. These results indicated that the water quality was the best in winter, better in spring and autumn than in summer. The relationship between the structure of the phytoplankton communi-ty and the water environmental quality was discussed.  相似文献   

12.
To understand the influence of Kuroshio intrusion on the phytoplankton community,a field investigation was conducted in spring 2017 in the East China Sea(ECS),and 130 seawater samples were collected and analyzed.Trichodesmium comprised the highest cell abundance contributing about 66%of the total phytoplankton followed by diatoms(17%) and dinoflagellates(16%).The dominance of the Kuroshio Waters(KW) and the Taiwan Warm Currents(TWC) were higher than the Coastal Waters(CW).The vertical distribution of physicochemical parameters depicted the intrusion of KW at the bottom layer,but it failed to reach the surface as strong upwelling was not initiated.Therefore,the dissolved inorganic phosphate(DIP) concentrations and P/N ratios were the lowest in the CW and the upper water layers,which limited the diatom growth in this area.Besides,the dinoflagellates cell abundance was also lower except in the surface and CW,though they comprised the maximum richness of species among the phytoplankton community.However,the unique characteristics such as diazotrophy and gas vacuoles of Trichodesmium made the situation advantageous,and they comprised the maximum cell abundance in this area especially in KW and the TWC.Temperature,DIP and P/N ratios appeared to be the major environmental drivers for Trichodesmium proliferation in the ECS during the study period.  相似文献   

13.
Seasonal variation in abundance and species composition of a planktonic diatom assemblage distributed in the water column and also settled on the bottom was investigated for the shallow coastal water in Matsushima Bay on the Pacific coast of northeastern Japan during the period from October 1999 to September 2000. A spring bloom of diatoms began in April when nutrient concentrations started to increase, indicating the importance of nutrients. Viable cells of Skeletonema costatum and Thalassiosira spp., which were the dominant species in the water column throughout the year, were also always abundant in the bottom sediment. Both populations in the water column and on the bottom fluctuated essentially in parallel. For the planktonic diatoms in shallow coastal waters to maintain their vegetative populations in the water column, it would be advantageous for them to have a seeding population of viable cells on the bottom that are easily resuspended into the upper photic layer.  相似文献   

14.
The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 μg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level(including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that diatoms were the main phytoplankton in this area, and Skeletonema costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema(mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus(spring) →Chaetoceros(summer and autumn) → Coscinodiscus(winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950 s-2000 s.  相似文献   

15.
INTRODUCTIONTheproductionofphytoplanktonisthefirsttacheintheproductionbymarineorganismsandinthemarinefoodchain .Knowledgeofprimaryproductioninmarinewatersisprerequisiteforexploitationandmanagementoftheocean’slivingresources.Theprimaryproductioninmarin…  相似文献   

16.
Jiaozhou Bay data collected from May 1991 to February 1994, in 12 seasonal investigations, and provided the authors by the Ecological Station of Jiaozhou B ay, were analyzed to determine the spatiotemporal variations in temperature, light, nutrients (NO-3-N, NO-2-N, NH+4-N, SiO2-3-Si, PO3-4-P), phytoplankton, and primary production in Jiaozhou Bay. The results indicated that only silicate correlated well in time and space with, and had important effects on, the characteristics, dynamic cycles and trends of, primary production in Jiaozhou Bay. The authors developed a corresponding dynamic model of primary production and silicate and water temperature. Eq.(1) of the model shows that the primary production variation is controlled by the nutrient Si and affected by water temp erature; that the main factor controlling the primary production is Si; that water temper ature affects the composition of the structure of phytoplankton assemblage; that the different populations of the phytoplankton assemblage occupy different ecologica l niches for C, the apparent ratio of conversion of silicate in seawater into phytoplankton biomas and D, the coefficient of water temperature's effect on phytoplankton biomass. The authors researched the silicon source of Jiaozhou Bay , the biogeochemical sediment process of the silicon, the phytoplankton predominan t species and the phytoplankton structure. The authors considered silicate a limit ing factor of primary production in Jiaozhou Bay, whose decreasing concentration of silicate from terrestrial source is supposedly due to dilution by current and up take by phytoplankton; quantified the silicate assimilated by phytoplankton, the intrins ic ratio of conversion of silicon into phytoplankton biomass, the proportion of silicate uptaken by phytoplankton and diluted by current; and found that the primary production of the phytoplankton is determined by the quantity of the silicate assimilated by them. The phenomenon of apparently high plant-nutrient concentrations but low phytoplankton biomass in some waters is reasonably explained in this paper.  相似文献   

17.
To explore the spatial-temporal distribution of the phytoplankton community and evaluate the combined effects of marine resource exploitation, net-collected phytoplankton and physical-chemical parameters were investigated in the Xiangshan Bay during the four seasons of 2010. A total of eight phyla, 97 genera, and 310 species were found, including 232 diatom species, 45 dinoflagellate species and 33 other taxa. The phytoplankton abundances presented a significant (P<0.001) seasonal difference with the average of 60.66×104 cells/m3. Diatoms (mainly consisting of Coscinodiscus jonesianus, Cerataulina pelagica, Skeleto n ema costatum, and genus Chaetoceros) dominated the phytoplankton assemblage in all seasons. We found great spatio-temporal variation in community composition based on the multidimensional scaling and similarity analysis. Canonical correspondence analysis show that temperature, nutrition, illumination, and salinity were the main variables associated with microalgal assemblage. Compared with the previous studies, an increase in phytoplankton abundance and change in the dominant species coincided with increased exploitation activities in this bay (e.g. operation of coastal power plants, intensive mariculture, tidal flat reclamation, and industrial and agricultural development). The present findings suggest that the government should exercise caution when deciding upon developmental patterns in the sea-related economy.  相似文献   

18.
INTRODUCTIONNandPinputtedintoJiaozhouBaybyriversandbysewageeffluentsofcities ,havemadetheBaybecomemoreandmoreeutrophicdaybyday .Shen ( 1994)thoughtthatphytoplanktongrowthwaslimitedbythechangefromnitrogentophosphorous ;andthatthesilicateconcentrationinJiaozh…  相似文献   

19.
Benthic diatoms constitute the primary diet of abalone during their early stages of development. To evaluate the dietary preferences of early post-larval abalone, Haliotis diversicolor supertexta, we analyzed the gut contents of post-larvae that settled on diatom films. We compared the abundance and species diversity of diatom assemblages in the gut to those of the epiphytic diatom assemblages on the attachment films, and identified 40 benthic diatom species in the gut contents of post-larvae 12 to 24 d after settlement. The most abundant taxa in the gut contents were Navicula spp., Amphora copulate, and Amphora coffeaeformis. Navicula spp. accounted for 64.0% of the cell density. In the attachment films, we identified 110 diatom species belonging to 38 genera. Pennate diatoms were the dominant members including the species Amphiprora alata, Cocconeis placentula var. euglypta, Cylindrotheca closterium, Navicula sp. 2, and A. coffeaeformis. Nano-diatoms (<20 μm in length) accounted for a considerable proportion of the total species number and cell density of the diatom assemblages in the gut contents and on the films. This suggests that nano-diatoms are important to the efficient production of abalone seed. The difference of the composition and abundance of diatoms between in the guts and on the biofilms suggests that early post-larval grazing was selective. An early post-larval abalone preferred nano-diatoms and the genera Navicula and Amphora during the month after settlement.  相似文献   

20.
To understand the responses of a freshwater ecosystem to the impoundment of the Three Gorges Reservoir (TGR), phytoplankton was monitored in the tributaries of the TGR area. From August 2010 to July 2011, algal species composition, abundance, chlorophyll a and other environmental parameters were investigated in the Gaolan River, which is a tributary of Xiangxi River. Thirty-one algal genera from seven phyla were identified. Results show that the lowest concentrations of total phosphorus (TP) and total nitrogen (TN) were 0.06 mg/L and 1.08 mg/L, respectively. The values of TP and TN exceeded the threshold concentration of the eutrophic state suggested for freshwater bodies. In the Gaolan River, the succession of phytoplankton showed clear seasonal characteristics. Different dominant species were observed among seasons under the control of environment factors. In spring and summer, the dominant species were Nitzschia sp. and Aphanizomenon flos-aquae (L.) Ralfs, the limiting nutrient was NO 3 ? -N, and the key environmental factor for phytoplankton population succession was water temperature (WT). In autumn and winter, the dominant species were A. flos-aquae and Chlorella sp., the limiting nutrient was PO 4 3? -P, and the key environmental factors were transparency and WT. This study illustrates the influence of physical and chemical factors on phytoplankton seasonal succession in a tributary of TGR since the downstream regions of Xiangxi River and Gaolan River became reservoirs after impoundment of the Three Gorges Dam. We suggest that this activity has significantly affected water quality in the dam area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号